JavatlF B 3 B

CEE#iss
Core J2EE™ Patterns N

Best Practices and Design Strategies

efactorings for JEVENEIAU=1s

EBlegies

Deepak Alur

(%) John Crupi 4% [[TT] 44, g & ﬁ\ P
- Dan Malks i wWww. sciencep. com

Java 27 5L $ &

J2EE # > & R

(RZEDRRD
™
Core J2EE ~ Patterns
Best Practices and Design Strategies

Deepak Alur

(%) JohnCrupi 4w
Dan Malks

4 3 & B &

& =

E=¥: 01-2003-6988 &

moEE A

AT YR A Java 2 PH2EE) CBEECRBLL, fefbsiik . Bovk Smk e g urffmi ok /s
KW R2EE QLRI 1S BT KRN R RO, 01 H A R Java BOR.
ABE ST J2EE (R UFF . BRSO R F MR HF B4,

English reprint copyright©2003 by Science Press and Pearson Education Asia Limited.
Original English language title: Core J2EE™ Patterns: Best Practices and Design Strategies, 1™ Edition by
Deepak Alur, John Crupi and Dan Malks, Copyright©2001
ISBN 0-13-064884-1
All Rights Reserved.
Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall
PTR.
For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
N R PN AR 1155 T B N R £ R L T LS S KR G I bt IS IR E S
A5 LRI § Pearson Education(3/E 2 HAR S SO B Db % AR A AT
EBERRE 1P KiE
J2FE #4HiU=Core J2EE' Patterns: Best Practices and Design Strategies/ () Deepak
Alur 545 8. —3ERIA. —dbut: BPFHIREE, 2004
Java BT OL15AD
[SBN 7-03--012465-0
Lodoo A N Java il S—RPBE—#.30 IV 1pa1e

vh LR RECAS 150 CTP B a4 7 (2003) 48 099960 5

KX BRI/ iz 4 2
TR H: SAR/H@H% LHELPERETE
A 2 %2 B o IR
JE AR I #T e Y
HEsH4R6Y: 100717
http:// www . sciencep.com

m 4 ® M
BEEH SR T T HLH I 1504 45 41

*
2004 iR 1 HE - W JEAL T8TX960 1/16
2004 15 1 HE - XER) E3K: 30 1/2
Ei¥: 1—3 000 FH: 579 000

Eff: 50.00 T
(A ED e R B)R . KA AR GRED)

m RIS

PR TAL SR A 5tk . (AR 2 b MR R BB R B T L0 B 22 . Java (9
B S TE T A BN EE etk . Rl AR TR I st Ab B B A 22 10 1R)AE. Java IV HOTT 4R
BRAERMUY CHEFHM—EEZE /L, MA Java Al LG EHACERE 20t m8. £
S8, k. BEE. “em%. Java Mt BB, 4 A TILTERERE
RGERGEOHE, LHAET Web HREFKH, Java HARAEFMIFHIES . & Java
Fish B NERFE , Java BIATH—HBIETF Ok MEBN FRF=REEMIES,
Internet A& BT Oak WE A M Java B RiiTT. BIFE, 2EEHARE L Mk
Web I F RGEIRHEF- 6 .
FHBF T ARAMUEEERFIRETH, EREEBRRFHRERIE, B
FEmMREBEERETEMEAR, AMIFREFNSSHMMNREREPITZAERN.
HA— 885 A, BV E ST R AL . A Gamma ,Helm , Johnson Fl Vlissides
AENLIBE GRIER) BT S, R R F 53 A BB i Xt 588
FROGHREENS . FrA S0 BTN ARG REELE T RERRIHEX, %
PN TR v BT SUKR R 2 X E R AR
AMNBYGRT 5 Java BFIZIHA Java ﬁlﬂ‘ﬁiﬁ‘ﬁﬁ’:ﬂ’]"‘ﬁ#’ﬁ“ BT WA Java
TR REMBELZR LS MBEFE.

(Java B) R H EMEE GRS KA, LLETRAH Java BT RE, AN
417 Gamma. Helm. Johnson Fil Vlissides & MM B (RITEL) HIIHMTA
23 R EREAE, Java FRFE R LURE T M EIIHEENMAE, IR ESERcP R
S ASE B3R et i Java BIF.

{Java BEEUM B YA B T BT AE T, B8 T Java R BRI REE
R PR, B SRR, RIE R IOR E B A 1R
SRR RGBT TSR . B4 % Rt #2 +h # R J2EE | ISP,
EJB il APl EHAETAE, BEEEH —CHREERE Java BFRFESE .

(J2EE #%.0#3) £ Sun Java Center BYBF IR ITHITH 12EE SR ELERLTI ek,
%5 EERAR 12FE X284 R (Java Server Pages, Java Servlet, Enterprise Java Beans,
Java Message Services %) B, BELE . TR ML RUER AR R, %
28T J2EE A345R 15 AMER A FR KB RRES A URA BLETE ifl BAEE L.
HHHAES 2EE BIFE . R, WINE . JRR E B AREEA . —A)iE, %R

i J2EE #50S#EX (#AR)
EE TR, WEMITA 12EE E&UHBBTA A,
XML E#— U MbRAE, Web T1. BiE . HIDES, HWATLUH XML XR#ER.
kBB MR EFE#F Java K403 XML 3084, (FH Java Ab38 XML) PFE4RSR T
e A Java K25 XML X% B & B iR H MR £/ Java 2038 XML BERENA
£ HEBE 1000 T HETF SAX, DOM, JDOM, JAXP, TrAX, XPath, XSLT, SOAP %
PR, % BE S T Java iE XML SCRI Java BFF 5L . HNA WA SRR AN
B, &S e FNERS%,
£ (32At Java) o, 4% RTST EHAMB A —, Dibble M Java ¥ S HH HISEH
ERGATIEE, RKVER T RTSI &0 X B AR, A IZH0SER R
Hamaias, ZHEE THEANENBERREH—AR. HFENFERE. SES
AR B E4R0EH: . SEAF R P ERE LLR VM SRRt I, SRR . EHER
el . MIBRAER AN WU TN R BRI e s (RAESEE . IR
BB AR A s . R H . BB RIS, XR—AIER L
HIsEs, EATHZLEM Java FEFEAR

(Java UM SEHEMN) MRTH RKBEEH, k. MR, A WM
AL XA AT TE A, A TARRN K Java M. KB EBBEW™
#, ¥R, TRIERFRRSE .

BT XEREANRT Java MANGEEENE: WEALRER Java BiEL
BB Java Wi, Java N . J2EE B, BIA 2% B E Java FFERN
FRATE, (Java Ab38 XML SCR4H Java LM RGEFF R) » HA ﬁﬁﬁ—%mﬁ!ﬁﬁfélﬁ i
HEENLIRBSENE.

AHETFUH, 450 Java REF XA AP A RBERZEREIES, MEEL
B0 RIEE SRS BB ERBOR .

Hlex FrAEREREEMFLHIRE RE HE
iR Java 2 AL, @A RS IIRITFE

In the world of software, a pattern is a tangible manifestation of an
organization’s tribal memory. A pattern provides a common solution
to a common problem and so, within the culture of one specific orga-
nization or within one domain, naming and then specifying a pattern
represents the codification of a common solution, drawn from
proven, prior experience. Having a good language of patterns at your
disposal is like having an extended team of experts sitting at your
side during development: by applying one of their patterns, you in
effect take the benefit of their hard-won knowledge. As such, the best
patterns are not so much invented as they are discovered and then
harvested from existing, successful systems. Thus, at its most
mature state, a pattern is full of things that work, absent of things
that don’t work, and revealing of the wisdom and rationale of its
designers.

Deep, really useful, patterns are typically ancient: you see one and
will often remark, “Hey, I've done that before.” However, the very
naming of the pattern gives you a vocabulary that you didn’t have
previously and so helps you apply that pattern in ways you other-
wise might have not have realized. Ultimately, the effect of such a
pattern will be to make your system simpler.

Patterns not only help you build simpler systems that work, but
they also help you build beautiful programs. In a culture of time

Foreword

starvation, writing beautiful software is often impossible. That’s sad,
for as professionals, we strive to build things of quality. By applying
a good set of patterns, it is possible to bring a degree of elegance in to
your systems that might otherwise have been lacking.

The authors of Core J2EE Patterns have harvested a really useful
set of patterns. Don’t get me wrong: J2EE is certainly an important
platform, enabling teams to build some very powerful systems. How-
ever, reality is, there is still a wide semantic gap between the
abstractions and services that J2EE provides and the final applica-
tion that a team must build. Patterns such as specified in this book
represent solutions that appear again and again in filling that gap.
By applying these patterns, you thus carry out the primary means of
reducing software risk: you write less software. Rather than discov-
ering these solutions on your own, apply these patterns, which have
already proven their utility in existing systems.

More than just naming a set of patterns, the authors make them
approachable by specifying their semantics using the UML. Addi-
tionally, they show you how to apply these patterns and how to refac-
tor your system to take advantage of them. Again, it’s just like
having a team of experts sitting at your side.

Grady Booch
Chief Scientist
Rational Software Corporation

This book is about patterns for the Java 2 platform, Enterprise
Edition (J2EE). These J2EE patterns provide solutions for problems
typically encountered by designers of software applications for the
J2EE platform. All the patterns documented in the catalog have
been discovered in the field, where they have been used to create
successful J2EE applications for our customers.

This book describes proven solutions for the J2EE platform with a
particular emphasis on such key J2EE technologies as: Java Server
Pages (JSP), Servlets, Enterprise JavaBeans (EJB) components,
Java Message Service (JMS), JDBC, and Java Naming and Directory
Interface (JNDI). We offer solutions for recurring problems for the
J2EE platform through the J2EE Pattern Catalog and J2EE refac-
torings. You can apply these ideas when developing new systems or
when improving the design of existing systems. The patterns in this
book will help you quickly gain the proficiency and skills to build
robust, efficient enterprise applications.

Today, as in the past, many of us naively assume that learning a
technology is synonymous with learning to design with the technol-
ogy. Certainly learning the technology is an important part to being
successful in designing with the technology. Many existing Java
books are excellent at explaining technology details, such as API spe-
cifics and so forth, but at the same time they give no insight on

xvii

Preface

applying the technology. Learning to design comes from experience
and from sharing knowledge on best practices and bad practices.

The experiences we have conveyed in this book are derived from
the work we have done in the field. We are part of Sun Microsystems,
Inc’s Sun Java Center (SJC) consulting organization. In our work,
we often encounter situations where, because technology is moving
so quickly, designers arid developers are still struggling to under-
stand the technology, let alone how to design with the technology.

It is not good enough to tell designers and developers to write good
code, nor is it sufficient to suggest using Servlets and JSP for devel-
oping the presentation tier and EJB components! for developing the
business tier.

So, given this scenario, where does an aspiring J2EE architect
learn not only what to do, but what not to do? What are the best
practices? What are the bad practices? How do you go from problem
to design to implementation?

Sun Java Center and the J2EE
Pattern Catalog

Since its inception, SJC architects have been working with clients all
over the world to successfully design, architect, build, and deploy
various types of systems based on Java and J2EE. The SJC is a rap-
idly growing consulting organization constantly adding new hires to
its ranks of experienced architects.

Recognizing the need to capture and share proven designs and
architectures, we started to document our work on the J2EE plat-
form in the form of patterns in 1999. Although we locked in the
existing literature, we could not find a catalog of patterns that dealt
specifically with the J2EE platform. We found many books dealing
with one or more of the J2EE technologies, and these books do an
excellent job of explaining the technology and unraveling the
nuances of the specifications. Some books offered extra help by pro-
viding some design considerations.

1. If you are new to the J2EE platform, we discuss the platform and
these technologies in Chapter 2, “J2EE Platform Overview”.

Preface

Since we first publicly presented our ideas on J2EE patterns at
the JavaOne Conference in June 2000, we have received an over-
whelming response from architects and developers. While some indi-
viduals expressed great interest in learning more about the patterns,
others confirmed that they had applied the patterns, but had never
named or documented them. This interest in patterns for the J2EE
platform further motivated us to continue our work.

Thus, we put together the J2EE Pattern Catalog., which was ini-
tially made available to the entire J2EE community in beta form via
the Java Developer Connection in March, 2001. Based largely on
community feedback, the beta documentation evolved into the
release you see in this book.

We hope these patterns, best practices, strategies, bad practices,
and refactorings for the J2EE platform, provide the same benefits to
you as they do for us.

What This Book is About?

This book is about:

s Using patterns for the J2EE Platform.
Based on our collective J2EE platform experience, we
have assembled the pattern catalog in this book. The
J2EE Pattern Catalog describes various best practices
related to architecting and designing applications for the
J2EE platform. This book focuses on the following four
J2EE technologies: Servlets, JSP, EJB components, and
JMS.

e Using best practices to design applications that use JSP,
Servlet, EJB components, and JMS technologies.
It is not sufficient to merely learn the technology and the
APIs. It is equally important to learn to design with the
technology. We have documented what we have
experienced to be the best practices for these
technologies.

¢ Preventing re-inventing-the-wheel when it comes to
design and architecture for the J2EE platform.
Patterns promote design reuse. Reusing known solutions

Preface

reduces the cycle time for designing and developing
applications, including J2EE applications.

Identifying bad practices in existing designs and
refactoring these designs to move to a better solution
using the J2EE patterns.

Knowing what works well is good. Knowing what does
not work is equally important. We have documented
some of the bad practices we have experienced when
designing applications for the J2EE platform.

What This Book Is Not?

This book is not about:

s How to program with Java or J2EE technologies
This book is not about programming. While this book is
heavily based on the J2EE technologies, we do not
describe the specific APIs. If you wish to learn about
programming using Java or using any of the J2EE
technologies, there are a number of excellent books and
online resources from which to learn. The online
tutorials on the official Java home page at http://
java.sun.com are highly recommended if you wish to
learn about individual technologies. The official
specifications for J2EE technologies are also available
from the Java home page.

o What process and methodology to use
We do not suggest any type of process or methodology to
use since the material presented in this book is not
related to either. Hence, this book does not teach you
about a process or methodology to follow in your projects.
If you would like to learn more about processes and
methodologies, there are a good number of books that
deal with various object-oriented methodologies and new
books on lightweight processes, such as Extreme
Programming.

e How to use Unified Modeling Language (UML)
This book is not going to teach you about UML. We use

Preface

UML extensively (specifically class and sequence
diagrams) to document the patterns and describe the
static and dynamic interactions. If you want to learn
more about UML, please refer to the UML User Guide
[Booch] and the UML Reference Manual [Rumbaugh] by
Grady Booch, Ivar Jacobson and James Rumbaugh.

Who Should Read this Book?

This book is for all J2EE enthusiasts, programmers, architects,
developers, and technical managers. In short, anyone who is
remotely interested in designing, architecting and developing appli-
cations for the J2EE platform.

We have attempted to distinguish this book as a training guide for
J2EE architects and designers. We all recognize the importance of
good designs and well-architected projects, and that we need good
architects to get there.

The use of well-documented patterns, best practices, and bad prac-
tices to share and transfer knowledge and experience can prove
invaluable for teams with varied experience levels, and we hope that
this book answers some of these needs.

How This Book is Organized

This book is organized into three parts.

Part 1—“Patterns and J2EE”, consists of Chapter 1 and Chapter 2.

Chapter 1: “Introduction” on page 4 is a brief discussion on vari-
ous topics, including patterns, J2EE platform, defining a pattern,
and pattern categorization. It ends by introducing the J2EE Pattern
Catalog.

Chapter 2 : “J2EE Platform Overview” on page 16 provides a high
level overview of the J2EE platform for those readers unfamiliar with
J2EE, or who wish to refresh their knowledge of the J2EE platform.

Part 2—“Design Considerations, Bad Practices, and Refactorings”
deals with design considerations for JSP, Servlets, and enterprise
beans. This part also includes bad practices and refactorings for the
J2EE platform. This part is comprised of Chapter 3, 4, and 5.

Preface

Chapter 3 “Presentation Tier Design Considerations and Bad
Practices” on page 34 and Chapter 4 “Business Tier Design Consid-
erations and Bad Practices” on page 54 discuss the design consider-
ations and bad practices for the presentation tier and business/
integration tiers respectively. The design considerations are issues
that a J2EE developer/designer/architect needs to consider while
working with the J2EE platform. The topics presented in these chap-
ters point the reader to other sources (such as official specifications
and well written books on these topics) for more detailed information
on these issues.

Chapter 5: “J2EE Refactorings” on page 72 includes some of the
refactorings we have experienced in our work in the field that has
enabled us to move our design from a less optimal solution to a bet-
ter solution. The refactorings provide another way to think about the
material in the rest of the book, providing what we believe to be
valuable companion material to the pattern catalog. This chapter
shows how we have been influenced by Martin Fowler and his book
"Refactoring” [Fowler]. For those readers who are familiar with the
Refactoring book, the format of this chapter will be very familiar.
However, the content of this chapter is entirely in the context of
J2EE technologies, whereas Martin Fowler addresses refactoring at
a different level. .

Part 3—“J2EE Pattern Catalog” presents the J2EE pattern cata-
log. The catalog contains the fifteen patterns that form the core of
this book. This part is comprised of Chapter 6, 7, 8, and 9.

Chapter 6: “J2EE Patterns Overview” on page 124 provides an
overview of the J2EE pattern catalog. This chapter begins with a
high level discussion of the pattern ideas and explains the way the
patterns are categorized into tiers. It also explains the J2EE pattern
template, which is used to present all patterns in this book. The
chapter discusses all the J2EE patterns and uses a diagram to show
their inter-relationships. It also provides what we have termed a
roadmap to the pattern catalog. This roadmap presents common
J2EE design and architecture-related questions with references to
patterns or refactorings that provide solutions to these questions.
Understanding the pattern relationships and the roadmap is key to
using these patterns. ‘

Chapter 7: “Presentation Tier Patterns” on page 150 presents six
patterns that pertain to using Servlets, JSP, JavaBeans, and custom
tags to design web-based applications for the J2EE platform. The

Preface

patterns describe numerous implementation strategies, and address
common problems such as request handling, application partition-
ing, and generating composite displays.

Chapter 8: “Business Tier Patterns” on page 246 presents seven
patterns that pertain to using EJB technology to design business
components for the J2EE platform. The patterns in this chapter pro-
vide the best practices for using the EJB and JMS technologies.
Where relevant, these patterns include discussion on other technolo-
gies, such as JNDI and JDBC.

Chapter 9: “Integration Tier Patterns” on page 388 presents two
patterns that pertain to integrating J2EE applications with the
resource tier and external systems. The patterns deal with using
" JDBC and JMS to enable integration between business tier and
resource tier components.

Epilogue: “J2EE Patterns Applied” on page 422 discusses realiz-
ing sample use cases with the patterns. This chapter discusses and
demonstrates how patterns are combined and work together. This
chapter reinforces the idea that patterns exist in a community, and
that each pattern supports, and is supported by, other patterns.

Companion Website and
Contact Information

The official companion website where we will provide updates and
other material is http://www.phptr.com/corej2eepatterns.

The J2EE Patterns interest group, j2eepatterns-interest@java.sun.com

is available for public subscription and participation. To subscribe to

the interest group and review the discussion archives, please visit:
http://archives.java.sun.com/archives/j2eepatterns-interest.html

Preface

Acknowledgments

We wish to thank Stu Stern, Director of Global Sun Java Center and
Mark Bauhaus, VP of .COM Consulting without whose support,
vision, and belief in our work this effort would never have been real-
ized.

We wish to thank Ann Betser, without whose support, encourage-
ment and skilled advice, we would have been lost.

We wish to express our sincere thanks to the PSA/iWorkflow refer-
ence implementation team of SJC architects: Fred Bloom, Narayan
Chintalapati, Anders Eliasson, Kartik Ganeshan, Murali Kaly-
anakrishnan, Kamran Khan, Rita El Khoury, Rajmohan Krishna-
murty, Ragu Sivaraman, Robert Skoczylas, Minnie Tanglao, and
Basant Verma.

We wish to thank the Sun Java Center J2EE Patterns Working
Group members: Mohammed Akif, Thorbiérn Fritzon, Beniot Garbi-
nato, Paul Jatkowski, Karim Mazouni, Nick Wilde, and Andrew X.
Yang.

We wish to thank Brendan McCarthy, SJC Chief Methodologist for
keeping us in balance and for all the advice.

We wish to thank Jennifer Helms and John Kapson for introduc-
ing the patterns to customers.

We wish to express our gratitude to the following SJC architects
from around the world for their support, feedback, and advice: Mark
Cade, Mark Cao, Torbjorn Dahlén, Peter Gratzer, Bernard Van
Haecke, Patricia de las Heras, Scott Herndon, Grant Holland, Girish
Ippadi, Murali Kaundinya, Denys Kim, Stephen Kirkham, Todd
Lasseigne, Sunil Mathew, Fred Muhlenberg, Vivek Pande, John
Prentice, Alexis Roos, Gero Vermaas, Miguel Vidal.

We wish to thank our management Hank Harris, Dan Hushon,
Jeff Johnson, Nimish Radia, Chris Steel, and Alex Wong for their
support and encouragement.

We wish to thank the following Sun colleagues for their collabora-
tion:

Bruce Delagi from Software Systems group; Mark Hapner, Vlada
Matena from Java Software Engineering; Paul Butterworth and Jim
Dibble from Forte Products Group; Deepak Balakrishna from iPlanet
Products Group; Larry Freeman, Cori Kaylor, Rick Saletta, and
Inderjeet Singh from the J2EE Blueprints Team; Heidi Dailey; Dana

Preface

Nourie, Laureen Hudson, Edward Ort, Margaret Ong, and Jenny
Pratt from Java Developer Connection.

We wish to thank the following for their feedback, advice, and sup-
port:

Martin Fowler and Josh Mackenzie from ThoughtWorks, Inc.; Richard
Monson-Haefel; Phil Nosonowitz and Carl Reed from Goldman Sachs;
Jack Greenfield, Wojtek Kozaczynski, and Jon Lawrence from Rational
Software; Alexander Aptus from TogetherSoft; Kent Mitchell from
Zaplets.com; Bill Dudney; David Geary, Hans Bergsten; Members of the
J2EE Patterns Interest group (j2eepatterns-interest@java.sun.com).

We wish to express our special thanks and gratitude to our lead
technical editor Beth Stearns, transforming our manuscripts and
making them readable, at the same time keeping us on track, and
working with us all the way with a heavily demanding schedule.

We wish to thank the technical editors Daniel S. Barclay, Steven J.
Halter, Spencer Roberts, and Chris Taylor for their expertise, metic-
ulous review and feedback.

We wish to thank Greg Doench, Lisa Iarkowski, Mary Sudul, and
Debby Van Dijk from Prentice Hall; Michael Alread and Rachel Bor-
den from Sun Microsystems Press, for doing everything it took to
produce this book.

We thank Bill Jirsa, John Hathaway, and Darlene Khosrowpour
from Sun Educational Services for their effort creating the SunEd
J2EE Patterns course (SL-500), John Sharp and Andy Longshaw from
Content Master Ltd., as well as all the course reviewers for SL-500.

We wish to thank the patterns and the Java communities on
whose work we have built.

The authors wish to thank their families for their support.

Deepak Alur wishes to thank:
Kavya, Shivaba and Samiksha—for your support, understanding,
and inspiration; My Parents and Ajay.

John Crupi wishes to thank:
Ellen and Rachel—for your support , understanding and love.
Casey and Smokey—two great dogs will be forever missed.

Preface

Dan Malks wishes to thank:

Beth, Sarah, and Jonathan—for your support and for bringing spe-
cial meaning to everything in my life.

