¢ Real solutions for
real programmers
¢ 100% ISO

Compliant
+ + e Supercharge

Productivity with the

g' ﬁ %?b 1) (HHIR) :ch::a:(j fbraries
C&C++ CODE CAPSULES e From Pointers

to templates - and
A GUIDE FOR PRACTITIONERS beyond
e Based on Chuck
Allison’s respected
C/C++ Users
Journal column

(%) Chuck Allison #wZ N

e =

C 0 C++HX IR E
SLHARAEEIERD
(SENRRD

C & C++ Code Capsules

A Guide For Practitioners

(%) Chuck Allison s

4 % & K a

it =

El=F. 01-2003-6794 2

I 5 I

AT P A W Aoy AT HE C RECH, UM AR a8 TRIRER . SI0L . SO SCIFRE R 1
Pl 45 LEIAL PR AN AP AT RN 2 BT A BRI AR RS SCAT M7 G % . B . L ETRAR PR ol WL
e BB RS R PRI £ 55

AL T CH CH A a R B], T 3T ST A A DAL TR KRR S8 R S 0 0
FRUATHI BRI, 0T C/CH RIS ACE

English reprint copyright © 2003 by Scicnce Press and Pearson Education Asia Limited.

Original English language title: C & C++ Code Capsules: A Guide for Practitioners, 1% Edition by
Chuck Allison, Copyright © 1998

ISBN 0-13-591785-9
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice
Hall PTR.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

DURA R NRESR BT (GG PR 7 IR 5B RO & i) R 15
A5 N W41 Pearson Education(¥5 A U IR ARSE N BOLBIT IO AR B . JChR B S T4 1.
EHERSE CIP) #iE

C & C++ AXRYERE: ST R HI5HE= C & C++ Code Capsules: A Guide for Practilioners
/(R Allison, €. % —EIA. —Ibni: FlEhMAL, 2004
ISBN 7-03-012469-3

[.Coos M. A= LCEET—MFERT—HT IV.TP312

oh [l A B 1000 CTP s i (2003) 38 099957 &

R X%, DR/ TIEHE: AR
TAF 4] B AR/ &)4 # P EETE

8 x K B LR
LR ORI R 62
BB #5: 100717
http:// www. sciencep.com

Ll B O = ¥

FEENIRA R AT K HUFE L 204
*
20001 S - IR JUA: 787X960 1/16
2004 9 L FIES- - ENRRY Gigk: 36 3/4
CHL: 13 000 TR 588 000

Efr: 60.00 7
T BN B), AL S STl R 45D

Foreword

Bruce Eckel

I first heard about Chuck when his bit handling classes,
bitset and bitstring, were accepted into the standard C++ library in March 1993
(bitstring was later absorbed when the STL was added). While I myself did add a couple
of tiny bits to the C++ standard here and there, the idea of successfully running an entire
class through the terrible gauntlet of the ANSI/ISO C++ committee (on which we were both
participants, so we knew) impressed me greatly.

But in the world of computers, which is so full of overstatement that I must ironically rely
on my intuition rather than my intellect to discern truth, what impresses me more is someone
who can explain things in a simple, clear, and non-overblown way. That is, a great teacher.
Chuck is a great teacher. You can see it in the activities he finds himself compelled to do: writ-
ing, teaching, editing, explaining. When I find someone like this—and I know for sure when I
see them speak to an audience—I convince them to speak at the Software Development (SD)
conference (where I chair the C++ and Java tracks). Chuck has become a regular fixture at the
conference, satisfying audiences on both coasts.

At the last SD conference (Fall 1997 in Washington, DC), it was Chuck’s birthday, and
when we found this out a group of us took him out to dinner. It was only after we were finally
seated that I looked around and realized we were all authors: Bjarne Stroustrup (creator of C++
and author of The C++ Programming Language), Dan Saks (C++ columnist, speaker, consul-
tant, and long-time secretary of the ANSI/ISO C++ committee), Bobby Schmidt (CUJ colum-
nist, speaker), Marco Cantu (author of the “Mastering Delphi” books as well as C++ books),
Tim Gooch (editor of the Cobb Group publications on C++ and now Java), and myself. These
are the folks who respect Chuck enough to buy him dinner.

There are, of course, lots of “introduction to C++" books. Sometimes I feel like | keep try-
ing to write a book on that subject over and over (my—I hope—final effort was Thinking in
C++). But what happens when you’ve understood the basics and you want more depth? Books
exist, but they can often be written in the tongue of the experts (a language that leaves me

X Foreword

gasping) or they cover topics that are too esoteric or advanced. This book provides a bridge to
the world of advanced topics; it gives you what you need but it won't overwhelm you in the
process.

Chuck has made his book both clear and accurate, and accuracy is something else I'm
exceptionally fond of. When a book has too many flaws I grow tired of it (in the early days we
had to put up with such things, but now there are enough carefully created C++ books that
there’s no reason to waste your time). Another thing I like a lot about this book is the brevity of
the chapters, and the way each one is focused on a single topic, so I can pick it up and get an
entire concept at once (I have a somewhat short attention span). This is a book that you will
enjoy over time as it hands you one insight after another.

Bruce Eckel
http:/fwww. EckelObjects.com
October 1997

Preface

Tlis book is for people who program in C and C++ for a
living. It assumes that you are already familiar with the syntax and basic constructs of both lan-
guages, and it offers practical wisdom for creating effective, real-world programs. Each code
capsule, or sample program, contains working code illustrating proven idioms and techniques
that leverage the power of these important programming languages.

This book serves as a voice of experience for those who wish to strengthen their skills and
improve their effectiveness in the workplace. Despite current fervor for the object-oriented par-
adigm (which this book abundantly embraces), | make no excuse for paying homage to the C
foundations of C++. I have found too many developers ill-prepared to master C++ because they
lack a thorough understanding of basic concepts such as pointers, scope, linkage, and static type
checking. Perhaps the biggest deficiency of all is a lack of familiarity with the standard C
library. It is sad indeed when developers waste time reinventing what the library functions
already provide so well. The C++ novice is often too eager to abandon (i.e., gloss over) simple
C in favor of the “exciting” features of C++, such as inheritance, exceptions, or overriding oper-
ator new, even when such are not warranted. I fee! confident that everyone will learn something
from these pages. Chapters 1 and 13 through 16 are strictly C++ chapters, and Chapters 4
through 6 apply only to the C language. All other chapters cover both the C and C++ aspects of
their respective topic.

That said, this is primarily a C++ book. As it goes to press, the C++ standardization effort
is in its home stretch. The second public committee draft (CD2) has completed its cycle and only
minor edits remain. As a member of this committee since early 1991, I have seen its document
grow from 200 to over 750 pages. We have added exceptions, templates, namespaces, runtime
type identification (RTTI) and other features to the language, and a sophisticated, templatized
system of interrelated algorithms, containers, and iteration constructs to the library (commonly
known as the Standard Template Library, or STL). Unlike other standards efforts, this committee
has concentrated as much on invention as on standardizing existing practice. The overwhelming

xii Contents

intricacies of C++ caused one Internet surfer to post this message: “If C gives you enough rope
1o hang yourself, then C++ gives you enough rope to hang everyone in your neighborhood. hoist
the riggings of a smail sailing ship, and still have enough left over to hang yourself.” | have
labored to illustrate and motivate standard C++ and its library in such a way that you might use
your rope more wisely.

The first chapter (Chapter 0), an excerpt from an interview I conducted with Bjarne
Stroustrup, records his feelings about the state of C++ as it becomes a standard. The rest of the
book is divided into three parts.

Part I: Preliminaries

After a brief tour of C++, these chapters close some of the gaps a typical C programmer might
have before s/he prepares to tackle C++. Chapter 2, “Pointers,” is based on a well-received
three-part series 1 ran in the C Users Journal in 1993, Chapters 4 through 6 cover what every
professional should know about the standard C library, which is a crucial part of standard C++.

Part li: Key Concepts

This section thoroughly motivates and illustrates the concepts and features of the C++ language.
Chapter 7 introduces data abstraction through classes, and Chapter 8 covers type abstraction as
implemented by the C++ template mechanism. Templates are every bit as crucial to the effective
use of C++ as objects are, perhaps even more so. Chapter 14 not only treats inheritance and
polymorphism, but also illustrates object-oriented design and reuse as it presents a framework
for object persistence that works with today’s relational database management systems. The
chapters in between give the reader depth in important fundamental concepts that too many
developers tend to overlook.

Part lll: Leveraging the Standard Library

Chapters 15 through 20 show how to use and appreciate the notable components of the stan-
dard C++ library, as well as elucidate some of the more sophisticated features of the standard
C library that went beyond the scope of Chapters 4, 5, and 6. Chapters 15 and 16 explain why
the STL subset of the library is what it is, and how to use it effectively. Chapter 19 contains a
useful date component that can even handle partial dates, a common business data processing
requirement. ‘
In summary, this is book about what works. I’ ve attempted to steer the reader away from
the “gotchas” by illustrating “best practices” with a reasonable balance of breadth and depth.
Why another C++ book in 1998? Because the language and library haven't stabilized until now.
This book goes to press just one week after the standards committee met to approve the final
draft of ISO C++, and 1 have taken care to steer clear of any dark comers that remain (all lan-

guages and environment have them). I am confident that all the material in this book will be
timely for years to come.

Contents il

Acknowledgments

This book has actually been in the making for more years than I care to admit. It began in 1984 .
when I chaired the Computer Science department at Pima Community College in Tucson, Ari-
zona, and my colleague Claire Hamlet persuaded me to pursue a grant to develop the first course
in C programming there. Thereafter I started collecting C program examples and shared them
with my fellow employees at Hughes Aircraft Company and at the World Headquarters of the
Church of Jesus Christ of Latter-day Saints in Salt Lake City. The “code capsule” idea, short
vignettes with examples on particular topics, grew from my effort to make learning C fun and
relatively painless for COBOL refugees. I was fortunate enough for a time to have management
support in chairing an internal C Language Support Committee, a first-rate team of experienced
programmers (David Coombs, John Pearson, Lorin Lords, Kent Olsen, Bill Owens, Drew Terry,
and Mike Terrazas) that developed an outstanding curriculum and effectively trained over 100
Church employees.

The name “code capsules” occurred to me over breakfast with Lee Copeland in the
Church cafeteria (he has a way of keeping me on my toes). Mike Terrazas reviewed early ver-
sions of these vignettes, and suggested that I present them 1o the C Users Journal, which 1
unwittingly did by showing them to P. J. “Bill” Plauger in London at the March 1992 meeting of
the C++ Standards Committee. As senior editor, he proposed that I become a columnist for the
Journal. The Code Capsule column ran from October 1992 unitil May 1995, when time commit-
ments forced me to resign. A valued mentor and friend, Bill has also been instrumental in
encouraging me to put these capsules in book form. Bruce Eckel was very kind to review por-
tions of the book, and Pete Becker scoured the entire manuscript, uncovering a number of errors
and inconsistencies. When it comes to “support,” however, that necessary intangible that keeps
one going, I must follow the example of almost every author who has ever written by thanking
my family. Only Sandy, James, and Kim have a feel for the magnitude of the effort that has
brought these pages to press. As 21-year-old James recently wrote from England, where he is

spending two years, “So, Dad is finally finishing his book! He’s been working on that for as long
as I can remember.”

Chuck Allison
hetp:/fwww.freshsources.com
Novemver 1997

Contents

Foreword ix
Bruce Eckel
Preface xi
C++: The Making of a Standard i
An Interview with Bjarne Stroustrup

PartI Preliminaries 9

1

A Better C
A Tale Of Two Languages H
Incremental Journey 12

The Type System 12
Function Prototypes 13
Type-safe Linkage 17
References 19

Type-safe /O 20
Standard Streams 21
Formatting 24
Manipulators 29
Function Overloading and Function Templates
Operator Overloading 32
Inline Functions 34
Default Arguments 35
new and delete 36

32

Contents

Statement Declarations 37
Standard Library Features 38
C Compatibility 38

Summary 40

Pointers : 40

Programming on the Edge 40
The Basics 40

Pointer Arithmetic 44 .
Pass-By-Reference Semantics 48
Generic Pointers 49

const Pointers 50

Pointers and One-Dimensional Arrays 52
Arrays as Parameters 56

Arrays of Strings 59

Pointers and Multidimensional Arrays 62

Higher and Deeper 64

Pointers to Functions 68

Pointers to Member Functions 71
Encapsulation and Incomplete Types 73
Summary 78

The Preprocessor 79

The #include Directive 79

Other Preprocessor Directives 80
Predefined Macros 83

Conditional Compilation 85

Preprocessing Operators 86

Implementing assert 88

Macro Magic 89

Character Sets, Trigraphs, and Digraphs 93
Phases of Translation 96

Summary 97

The Standard C Library, Part I ‘ 98
For the Adequate Programmer

<ctype.h> 99

<stdio.h> 102

<stdlib.h> 109

<string.h> 115

Contents

5 The Standard C Library, Part II
For the Polished Programmer

<assert.h> 118

<limits.h> 119

<stddef .h> 122

<time.h> 125

Appendix 5.1: Character Sets
Code Pages 129
Character Set Standards
ISO 10646 130
Unicode 131

127

130

6 The Standard C Library, Part I1I

For the Complete Programmer

<float . h> 132
<math. h> 132
<errno.h> 138
<locale.h> 138
<setijmp.h> 140
<signal.h> 142
<stdarg.h> 142
va_list's As Arguments
An Application 146
Conclusion 150

Appendix 6.1: Floating-point Number Systems

-

143

118

131

151

PartII Key Concepts

159

7 Abstraction

Data Abstraction 161
Operator Overloading 168
Concrete Data Types 173
Type Abstraction 180
Function Abstraction 181
Summary 184

8 Templates

Generic Programming - 187
Function Templates 187

161

185

10

11

Class Templates 189
Template Parameters 194
Template Specialization 196
Summary 199

Bit Manipulation

Bitwise Operators 202

Accessing Individual Bits 204

Large Bitsets 209

Bit Strings 224

Wish List 224

The bitset Template 224

The vector<bool> Template Specialization
Summary 228

Conversions and Casts

Integral Promotion 229
Demotions 233

Arithmetic Conversions 235
Function Prototypes 237
Explicit Conversions 239
Function-style Casts 240
Const Correctness 240
User-Defined Conversions 243
Beefing up operator|] 249
New-Style Casts 252
Summary 253

Visibility

What's In a Name? 255
Scope 255

Minimal Scoping 258

Class Scope 259

Nested Classes 265

Local Classes 266

Classic Namespaces 268
Namespace Scope 269
Lifetime 272

Lifetime of Temporaries 275
Linkage 276

Type-safe Linkage 280

Contents

202

227

229

255

Contents

12

13

14

“Language” Linkage 281
Summary 281

Control Structures

Structured Programming 283
Branching 290

Nonlocal Branching 296
Signals 300

Summary 305

References 305

Exceptions

Error Handling Alternatives 306
Stack Unwinding 314

Catching Exceptions 316
Standard Exceptions 318
Resource Management 322
Constructors and Exceptions 322
Memory Management 330
Exception Specifications 331

An Error-Handling Strategy 333
Summary 337

Object-oriented Programming

Inheritance 342

Heterogeneous Collections 343

Virtual Functions and Polymorphism 344
Abstract Base Classes 347

Case Study: A Framework for Object Persistence
Database Access 353

Mapping Objects to Relational Schema 354
PFX Architecture 356

A Code Walkthrough 359

Summary 379

283

306

338

350

Part IIl Leveraging the Standard Library

381

15

Algorithms

Complexity 386
Generic Algorithms 388

383

vi

16

17

18

Contents

Function Objects 392
Function Taxonomy 394
Function Object Adapters 395
Algorithm Taxonomy 396
Summary 399

References 399

Containers and Iterators 398

Standard Containers 401
Iterators 402

Iterator Taxonomy 403
Special-Purpose Iterators 405
Container Adapters 408
Associative Containers 409
Applications 409

Non-STL Containers 417
Summary 419

Text Processing 421

scanf 421

printf 427

Substrings 429

The Standard C++ String Class 436
String Streams 440

Wide Strings 441

Summary 442

File Processing 443

Filters 443

Binary Files 446

Record Processing 448
Temporary Files 454

Portability 455

POSIX 455

File Descriptors 456

Copying Files via Descriptors 456
Reading Directory Entries 458
Redirecting Standard Error 462
Encapsulating Directory Operations 466
Summary 471

Contents vil

19 Time and Date Processing 472

Julian Day Encoding 475

Date Classes for Real Work 495
Calculating the Week of the Year 521
Summary 522

Reference 522

20 Dynamic Memory Management 523

Ragged Arrays 523

Using the Heap in Standard C 525

The C++ Free Store 529

Deep versus Shallow Copy 530

Handling Memory Allocation Failure 533
Overriding new and delete 534
Placement new 535

Managing the Heap 538

Avoiding Memory Management 539
Summary 546

Appendices 547
A C/C++ Compatibility 547
B Standard C++ Algorithms 549
C Function Objects and Adapters 558

Function Objects 558
Function Object Adapters 560

D Annotated Bibliography 561

The C Practitioner’s Booklist 561
The C++ Practitioner’s Booklist 562

Index 565

C++: The Making of a Standard

(An Interview with Bjarne Stroustrup)

As this book goes to press, the second official commit-
tee draft (CD2) has been released, and national standards bodies have given their comments to
the joint ISO/ANSI standards committee (X3J16/WG21). The features of the language have
been stable for some time. Shertly before the committee met to approve CD2 in Stockholm in
July 1996, 1 had the opportunity to interview Bjarne Stroustrup for the C/C++ Users Journal. 1
was interested in getting his feelings on the state of the language and his thoughts on the future
of C++. This chapter is an excerpt from that interview.

To appreciate the work that has gone into the standard, as well as the interview that fol-
lows, a little history is in order. For a detailed technical and anecdotal history of C++, see
Stroustrup’s The Design and Evolution of C++ (Addison-Wesley, 1994).

Bjame Stroustrup, a Dane with a Ph.D. from Cambridge University (England), had used
the Simula language for distributed systems simulations in his research. He was disappointed
with its poor performance, however, so in 1979 when his new employer, AT&T Bell Labs,
invited him to “do something interesting,” he decided to infuse the C language with some Sim-
ula features he had grown accustomed to—most notably classes. Thus C with Classes was bomn.
It caught on at AT&T, was dubbed “C++,” and then proceeded to become a support burden for
its inventor. After the first edition of Stroustrup’s The C++ Programming Language (Addison-
Wesley, 1985) hit the shelves, however, there was no turning back; the language became too
popular. And as you might expect, multiple implementations appeared, each with its own spe-
cial features. About the time the C standard became official, the major players in the C++ com-
munity were pushing for a C++ standard. ANSI committee X3J16 met for the first time in
December 1989, with Dmitry Lenkov of Hewlett-Packard as chair. Steve Clamage of Sun
Microsystems, himself an early implementor of C++, became chair in 1996,

The base documents for the committee included the ISO C standard, as well as Ellis and
Stroustrup’s The Annotated C++ Reference Manual (ARM). The latter pretty much reflected

1

2 C++:The Making of a Standard

AT&T C++ 2.0, along with Bjarne’s ideas for extensions (mainly templates and exceptions). The
main goals at the outset were to standardize I0Streams, and to add templates and exceptions to
the language. Due to the large number of non-U.S. participants, the committee voted to work
jointly with ISO Working Group 21 beginning at the June 1991 meeting in Lund, Sweden. It
looked like things were winding down at the end of 1993, yet there was still some uncasiness
about a lack of robustness in the standard library. At the San Jose meeting in November 1993,
Alex Stepanov, then of Hewlett-Packard, gave a presentation on generic programming that
really put templates to good use. By the San Diego meeting the next March, he had refined his
and Meng Lee’s standard template library (STL) to the point that the committee was ready to
consider it seriously, even if it meant delaying the completion of the standard. | remember being
one of the conservative skeptics at the time, yet my hand went up in favor of STL, which, along
with IOStreams, is now the centerpiece of the standard C++ library.

The major features added since C++ 2.0 include templates, exceptions, user namespaces.
and runtime type identification (RTTI). They are “major” because they directly affect the overall
structure of your programs. Minor features, which are less intrusive but very powerful in their
own right, include new-style casts, a new boolean data type (bool), a capacity to overload on
enumerated types, support for wide characters, and alternative tokens to support foreign key-
boards (e.g., or for ||). In addition to STL, the standard library includes renovated stream
classes, a string class template with specializations for wide and narrow characters, and the infra-
structure for RTTI and for overloading and overriding operator new and operator delete.

Chuck Allison: I know you have a Ph.D. in Applied Math. What were your other degrees?

Bjarne Stroustrup: Not quite; my Masters degree (Cand.Scient.) from the University of Aarhus
(Denmark) is in “Mathematics with computer science.” I took the math part because that was
the only way to do computer science there in those days. My Ph.D. from Cambridge (Eng-
land, of course) is in Computer Science. I'm a very poor mathematician, but 1 guess that’s
better than not being one at all.

CA: How did you get into computing?

BS: By signing up for math and computer science in university. I have tried to remember why |
did that, but I really don’t know. I certainly hadn’t seen a computer by the time I signed up. |
guess the combination of scientific and practical aspects attracted me.

CA: When did you notice that C with Classes was becoming something that was going to con-
sume much of your time, if not your career, and not just a temporary interest?

BS: Somewhere in 1982 I realized that support of the C with Classes user community was
becoming an unacceptable drain on me. As I saw it, the user population had become too large
for one person to serve well while also doing research, but too small to support an infrastruc-
ture. I had to decide whether to develop C with Classes into a more flexible and expressive

