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Foreword

Bruce Eckel

I first heard about Chuck when his bit handling classes,
bitset and bitstring, were accepted into the standard C++ library in March 1993
(bitstring was later absorbed when the STL was added). While I myself did add a couple
of tiny bits to the C++ standard here and there, the idea of successfully running an entire
class through the terrible gauntlet of the ANSI/ISO C++ committee (on which we were both
participants, so we knew) impressed me greatly.

But in the world of computers, which is so full of overstatement that I must ironically rely
on my intuition rather than my intellect to discern truth, what impresses me more is someone
who can explain things in a simple, clear, and non-overblown way. That is, a great teacher.
Chuck is a great teacher. You can see it in the activities he finds himself compelled to do: writ-
ing, teaching, editing, explaining. When I find someone like this—and I know for sure when I
see them speak to an audience—I convince them to speak at the Software Development (SD)
conference (where I chair the C++ and Java tracks). Chuck has become a regular fixture at the
conference, satisfying audiences on both coasts.

At the last SD conference (Fall 1997 in Washington, DC), it was Chuck’s birthday, and
when we found this out a group of us took him out to dinner. It was only after we were finally
seated that I looked around and realized we were all authors: Bjarne Stroustrup (creator of C++
and author of The C++ Programming Language), Dan Saks (C++ columnist, speaker, consul-
tant, and long-time secretary of the ANSI/ISO C++ committee), Bobby Schmidt (CUJ colum-
nist, speaker), Marco Cantu (author of the “Mastering Delphi” books as well as C++ books),
Tim Gooch (editor of the Cobb Group publications on C++ and now Java), and myself. These
are the folks who respect Chuck enough to buy him dinner.

There are, of course, lots of “introduction to C++" books. Sometimes I feel like | keep try-
ing to write a book on that subject over and over (my—I hope—final effort was Thinking in
C++). But what happens when you’ve understood the basics and you want more depth? Books
exist, but they can often be written in the tongue of the experts (a language that leaves me
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gasping) or they cover topics that are too esoteric or advanced. This book provides a bridge to
the world of advanced topics; it gives you what you need but it won't overwhelm you in the
process.

Chuck has made his book both clear and accurate, and accuracy is something else I'm
exceptionally fond of. When a book has too many flaws I grow tired of it (in the early days we
had to put up with such things, but now there are enough carefully created C++ books that
there’s no reason to waste your time). Another thing I like a lot about this book is the brevity of
the chapters, and the way each one is focused on a single topic, so I can pick it up and get an
entire concept at once (I have a somewhat short attention span). This is a book that you will
enjoy over time as it hands you one insight after another.

Bruce Eckel
http:/fwww. EckelObjects.com
October 1997



Preface

Tlis book is for people who program in C and C++ for a
living. It assumes that you are already familiar with the syntax and basic constructs of both lan-
guages, and it offers practical wisdom for creating effective, real-world programs. Each code
capsule, or sample program, contains working code illustrating proven idioms and techniques
that leverage the power of these important programming languages.

This book serves as a voice of experience for those who wish to strengthen their skills and
improve their effectiveness in the workplace. Despite current fervor for the object-oriented par-
adigm (which this book abundantly embraces), | make no excuse for paying homage to the C
foundations of C++. I have found too many developers ill-prepared to master C++ because they
lack a thorough understanding of basic concepts such as pointers, scope, linkage, and static type
checking. Perhaps the biggest deficiency of all is a lack of familiarity with the standard C
library. It is sad indeed when developers waste time reinventing what the library functions
already provide so well. The C++ novice is often too eager to abandon (i.e., gloss over) simple
C in favor of the “exciting” features of C++, such as inheritance, exceptions, or overriding oper-
ator new, even when such are not warranted. I fee! confident that everyone will learn something
from these pages. Chapters 1 and 13 through 16 are strictly C++ chapters, and Chapters 4
through 6 apply only to the C language. All other chapters cover both the C and C++ aspects of
their respective topic.

That said, this is primarily a C++ book. As it goes to press, the C++ standardization effort
is in its home stretch. The second public committee draft (CD2) has completed its cycle and only
minor edits remain. As a member of this committee since early 1991, I have seen its document
grow from 200 to over 750 pages. We have added exceptions, templates, namespaces, runtime
type identification (RTTI) and other features to the language, and a sophisticated, templatized
system of interrelated algorithms, containers, and iteration constructs to the library (commonly
known as the Standard Template Library, or STL). Unlike other standards efforts, this committee
has concentrated as much on invention as on standardizing existing practice. The overwhelming
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intricacies of C++ caused one Internet surfer to post this message: “If C gives you enough rope
1o hang yourself, then C++ gives you enough rope to hang everyone in your neighborhood. hoist
the riggings of a smail sailing ship, and still have enough left over to hang yourself.” | have
labored to illustrate and motivate standard C++ and its library in such a way that you might use
your rope more wisely.

The first chapter (Chapter 0), an excerpt from an interview I conducted with Bjarne
Stroustrup, records his feelings about the state of C++ as it becomes a standard. The rest of the
book is divided into three parts.

Part I: Preliminaries

After a brief tour of C++, these chapters close some of the gaps a typical C programmer might
have before s/he prepares to tackle C++. Chapter 2, “Pointers,” is based on a well-received
three-part series 1 ran in the C Users Journal in 1993, Chapters 4 through 6 cover what every
professional should know about the standard C library, which is a crucial part of standard C++.

Part li: Key Concepts

This section thoroughly motivates and illustrates the concepts and features of the C++ language.
Chapter 7 introduces data abstraction through classes, and Chapter 8 covers type abstraction as
implemented by the C++ template mechanism. Templates are every bit as crucial to the effective
use of C++ as objects are, perhaps even more so. Chapter 14 not only treats inheritance and
polymorphism, but also illustrates object-oriented design and reuse as it presents a framework
for object persistence that works with today’s relational database management systems. The
chapters in between give the reader depth in important fundamental concepts that too many
developers tend to overlook.

Part lll: Leveraging the Standard Library

Chapters 15 through 20 show how to use and appreciate the notable components of the stan-
dard C++ library, as well as elucidate some of the more sophisticated features of the standard
C library that went beyond the scope of Chapters 4, 5, and 6. Chapters 15 and 16 explain why
the STL subset of the library is what it is, and how to use it effectively. Chapter 19 contains a
useful date component that can even handle partial dates, a common business data processing
requirement. ‘
In summary, this is book about what works. I’ ve attempted to steer the reader away from
the “gotchas” by illustrating “best practices” with a reasonable balance of breadth and depth.
Why another C++ book in 1998? Because the language and library haven't stabilized until now.
This book goes to press just one week after the standards committee met to approve the final
draft of ISO C++, and 1 have taken care to steer clear of any dark comers that remain (all lan-

guages and environment have them). I am confident that all the material in this book will be
timely for years to come.
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Journal. The Code Capsule column ran from October 1992 unitil May 1995, when time commit-
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C++: The Making of a Standard

(An Interview with Bjarne Stroustrup)

As this book goes to press, the second official commit-
tee draft (CD2) has been released, and national standards bodies have given their comments to
the joint ISO/ANSI standards committee (X3J16/WG21). The features of the language have
been stable for some time. Shertly before the committee met to approve CD2 in Stockholm in
July 1996, 1 had the opportunity to interview Bjarne Stroustrup for the C/C++ Users Journal. 1
was interested in getting his feelings on the state of the language and his thoughts on the future
of C++. This chapter is an excerpt from that interview.

To appreciate the work that has gone into the standard, as well as the interview that fol-
lows, a little history is in order. For a detailed technical and anecdotal history of C++, see
Stroustrup’s The Design and Evolution of C++ (Addison-Wesley, 1994).

Bjame Stroustrup, a Dane with a Ph.D. from Cambridge University (England), had used
the Simula language for distributed systems simulations in his research. He was disappointed
with its poor performance, however, so in 1979 when his new employer, AT&T Bell Labs,
invited him to “do something interesting,” he decided to infuse the C language with some Sim-
ula features he had grown accustomed to—most notably classes. Thus C with Classes was bomn.
It caught on at AT&T, was dubbed “C++,” and then proceeded to become a support burden for
its inventor. After the first edition of Stroustrup’s The C++ Programming Language (Addison-
Wesley, 1985) hit the shelves, however, there was no turning back; the language became too
popular. And as you might expect, multiple implementations appeared, each with its own spe-
cial features. About the time the C standard became official, the major players in the C++ com-
munity were pushing for a C++ standard. ANSI committee X3J16 met for the first time in
December 1989, with Dmitry Lenkov of Hewlett-Packard as chair. Steve Clamage of Sun
Microsystems, himself an early implementor of C++, became chair in 1996,

The base documents for the committee included the ISO C standard, as well as Ellis and
Stroustrup’s The Annotated C++ Reference Manual (ARM). The latter pretty much reflected

1



2 C++:The Making of a Standard

AT&T C++ 2.0, along with Bjarne’s ideas for extensions (mainly templates and exceptions). The
main goals at the outset were to standardize I0Streams, and to add templates and exceptions to
the language. Due to the large number of non-U.S. participants, the committee voted to work
jointly with ISO Working Group 21 beginning at the June 1991 meeting in Lund, Sweden. It
looked like things were winding down at the end of 1993, yet there was still some uncasiness
about a lack of robustness in the standard library. At the San Jose meeting in November 1993,
Alex Stepanov, then of Hewlett-Packard, gave a presentation on generic programming that
really put templates to good use. By the San Diego meeting the next March, he had refined his
and Meng Lee’s standard template library (STL) to the point that the committee was ready to
consider it seriously, even if it meant delaying the completion of the standard. | remember being
one of the conservative skeptics at the time, yet my hand went up in favor of STL, which, along
with IOStreams, is now the centerpiece of the standard C++ library.

The major features added since C++ 2.0 include templates, exceptions, user namespaces.
and runtime type identification (RTTI). They are “major” because they directly affect the overall
structure of your programs. Minor features, which are less intrusive but very powerful in their
own right, include new-style casts, a new boolean data type (bool), a capacity to overload on
enumerated types, support for wide characters, and alternative tokens to support foreign key-
boards (e.g., or for ||). In addition to STL, the standard library includes renovated stream
classes, a string class template with specializations for wide and narrow characters, and the infra-
structure for RTTI and for overloading and overriding operator new and operator delete.

Chuck Allison: I know you have a Ph.D. in Applied Math. What were your other degrees?

Bjarne Stroustrup: Not quite; my Masters degree (Cand.Scient.) from the University of Aarhus
(Denmark) is in “Mathematics with computer science.” I took the math part because that was
the only way to do computer science there in those days. My Ph.D. from Cambridge (Eng-
land, of course) is in Computer Science. I'm a very poor mathematician, but 1 guess that’s
better than not being one at all.

CA: How did you get into computing?

BS: By signing up for math and computer science in university. I have tried to remember why |
did that, but I really don’t know. I certainly hadn’t seen a computer by the time I signed up. |
guess the combination of scientific and practical aspects attracted me.

CA: When did you notice that C with Classes was becoming something that was going to con-
sume much of your time, if not your career, and not just a temporary interest?

BS: Somewhere in 1982 I realized that support of the C with Classes user community was
becoming an unacceptable drain on me. As I saw it, the user population had become too large
for one person to serve well while also doing research, but too small to support an infrastruc-
ture. I had to decide whether to develop C with Classes into a more flexible and expressive



