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Preface

This book is intended as a text for a one- or two-semester introduction to topology, at
the senior or first-year graduate level.

The subject of topology is of interest in its own right, and it also serves to lay the
foundations for future study in analysis, in geometry, and in algebraic topology. There
is no universal agreement among mathematicians as to what a first course in topology
should include; there are many topics that are appropriate to such a course, and not all
are equally relevant to these differing purposes. In the choice of material to be treated,
I have tried to strike a balance among the various points of view.

Prerequisites. There are no formal subject matter prerequisites for studying most of
this book. I do not even assume the reader knows much set theory. Having said that,
I must hasten to add that unless the reader has studied a bit of analysis or “rigorous
calculus,” much of the motivation for the concepts introduced in the first part of the
book will be missing. Things will go more smoothly if he or she already has had some
experience with continuous functions, open and closed sets, metric spaces, and the
like, although none of these is actually assumed. In Part I, we do assume familiarity
with the elements of group theory.

Most students in a topology course have, in my experience, some knowledge of
the foundations of mathematics. But the amount varies a great deal from one student
to another. Therefore, 1 begin with a fairly thorough chapter on set theory and logic. It
starts at an elementary level and works up to a level that might be described as “semi-
sophisticated.” Tt treats those topics (and only those) that will be needed later in the
book. Most students will already be familiar with the material of the first few sections,
but many of them will find their expertise disappearing somewhere about the middle
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of the chapter. How much time and effort the instructor will need to spend on this
chapter will thus depend largely on the mathematical sophistication and experience of
the students. Ability to do the exercises fairly readily (and correctly!) should serve as
a reasonable criterion for determining whether the student’s mastery of set theory is
sufficient for the student to begin the study of topology.

Many students (and instructors!} would prefer to skip the foundational material
of Chapter 1 and jump right in to the study of topology. One ignores the foundations,
however, only at the risk of later confusion and error. What one can do is to treat
initially only those sections that are needed at once, postponing the remainder until
they are needed. The first seven sections (through countability) are needed throughout
the book: I usually assign some of them as reading and lecture on the rest. Sections 9
and 10, on the axiom of choice and well-ordering, are not needed until the discussion
of compactness in Chapter 3. Section 11, on the maximum principle, can be postponed
even longer; it is needed only for the Tychonoff theorem (Chapter 5) and the theorem
on the fundamental group of a linear graph (Chapter 14).

How the book is organized. This book can be used for a number of different courses.
[ have attempted to organize it as flexibly as possible, so as to enable the instructor to
follow his or her own preferences in the matter.

Part 1, consisting of the first eight chapters, is devoted to the subject commonly
called general topology. The first four chapters deal with the body of material that,
in my opinion, should be included in any introductory topology course worthy of the
name. This may be considered the “irreducible core” of the subject, treating as it does
set theory, topological spaces, connectedness, compactness (through compactness of
finite products), and the countability and separation axioms (through the Urysohn
metrization theorem). The remaining four chapters of Part I explore additional topics;
they are essentially independent of one another, depending on only the core material
of Chapters 1-4. The instructor may take them up in any order he or she chooses.

Part I constitutes an introduction to the subject of Algebraic Topology. It depends
on only the core material of Chapters 1-4. This part of the book treats with some
thoroughness the notions of fundamental group and covering space, along with their
many and varied applications. Some of the chapters of Part II are independent of one
another; the dependence among them is expressed in the following diagram:

Chapter 9 The Fundamental Group

\\ Chapter 10  Separation Theorems in the Plane
Chapter 11  The Seifert-van Kampen Theorem
'

Chapter 12  Classification of Surfaces

/ _Chapter 13 Classification of Covering Spaces

Chapter 14  Applications to Group Theory
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Certain sections of the book are marked with an asterisk; these sections may be
omitted or postponed with no loss of continuity. Certain theorems are marked sim-
ilarly. Any dependence of later material on these asterisked sections or theorems is
indicated at the time, and again when the results are needed. Some of the exercises
also depend on earlier asterisked material, but in such cases the dependence is obvious.

Sets of supplementary exercises appear at the ends of several of the chapters. They
provide an opportunity for exploration of topics that diverge somewhat from the main
thrust of the book: an ambitious student might use one as a basis for an independent
paper or research project. Most are fairly self-contained, but the one on topological
groups has as a sequel a number of additional exercises on the topic that appear in later
sections of the book.

Possible course outlines. Most instructors who use this text for a course in general
topology will wish to cover Chapters 1-4, along with the Tychonoff theorem in Chap-
ter 5. Many will cover additional topics as well. Possibilities include the following:
the Stone-Cech compactification (§38), metrization theorems (Chapter 6), the Peano
curve (§44), Ascoli’s theorem (§45 and/or §47), and dimension theory (§50). I have,
in different semesters, followed each of these options.

For a one-semester course in algebraic topology, one can expect to cover most of
Part I1.

It is also possible to treat both aspects of topology in a single semester, although
with some corresponding loss of depth. One feasible outline for such a course would
consist of Chapters 1-3, followed by Chapter 9; the latter does not depend on the
material of Chapter 4. (The non-asterisked sections of Chapters 10 and 13 also are
independent of Chapter 4.)

Comments on this edition. The reader who is familiar with the first edition of this
book will find no substantial changes in the part of the book dealing with general
topology. I have confined myself largely to “fine-tuning” the text material and the
exercises. However, the final chapter of the first edition, which dealt with algebraic
topology, has been substantially expanded and rewritten. It has become Part II of this
book. In the years since the first edition appeared, it has become increasingly common
to offer topology as a two-term course, the first devoted to general topology and the
second to algebraic topology. By expanding the treatment of the latter subject, I have
intended to make this revision serve the needs of such a course.

Acknowledgments. Most of the topologists with whom | have studied, or whose
books I have read, have contributed in one way or another to this book; I mention
only Edwin Moise, Raymond Wilder, Gail Young, and Raoul Bott, but there are many
others. For their helpful comments concerning this book, my thanks to Ken Brown,
Russ McMillan, Robert Mosher, and John Hempetly, and to my colleagues George
Whitehead and Kenneth Hoffman.

The treatment of algebraic topology has been substantially influenced by the excel-
lent book by William Massey [M], to whom I express appreciation. Finally, thanks are
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due Adam Lewenberg of MacroTeX for his extraordinary skill and patience in setting
text and juggling figures.

But most of all, to my students go my most heartfelt thanks. From them I learned
at least as much as they did from me; without them this book would be very different.

JRM.



A Note to the Reader

Two matters require comment—the exercises and the examples.

Working problems is a crucial part of learning mathematics. No one can learn
topology merely by poring over the definitions, theorems, and examples that are worked
out in the text. One must work part of it out for oneself. To provide that opportunity is
the purpose of the exercises.

They vary in difficulty, with the easier ones usually given first. Some are routine
verifications designed to test whether you have understood the definitions or examples
of the preceding section. Others are less routine. You may, for instance, be asked to
generalize a theorem of the text. Although the result obtained may be interesting in its
own right, the main purpose of such an exercise is to encourage you to work carefully
through the proof in question, mastering its ideas thoroughly—more thoroughly (I
hope!) than mere memorization would demand.

Some exercises are phrased in an “open-ended” fashion. Students often find this
practice frustrating. When faced with an exercise that asks, “Is every regular Lindelof
space normal?” they respond in exasperation, “I don’t know what I'm supposed to do!
Am [ suppose to prove it or find a counterexample or what?” But mathematics (outside
textbooks) is usually like this. More often than not, all a mathematician has to work
with is a conjecture or question, and he or she doesn’t know what the correct answer
is. You should have some experience with this situation.

A few exercises that are more difficult than the rest are marked with asterisks. But
none are so difficult but that the best student in my class can usually solve them.
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Another important part of mastering any mathematical subject is acquiring a reper-
toire of useful examples. One should, of course, come to know those major examples
from whose study the theory itself derives, and to which the important applications
are made. But one should also have a few counterexamples at hand with which to test
plausible conjectures.

Now it is all too easy in studying topology to spend too much time dealing with
“weird counterexamples.” Constructing them requires ingenuity and is often great
fun. But they are not really what topology is about. Fortunately, one does not need
too many such counterexamples for a first course; there is a fairly short list that will
suffice for most purposes. Let me give it here:

R’ the product of the real line with itself, in the product, uniform, and box topolo-
gies.

R¢ the real line in the topology having the intervals [a, b) as a basis.
Sqo the minimal uncountable well-ordered set.

13 the closed unit square in the dictionary order topology.

These are the examples you should master and remember; they will be exploited
again and again.
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