uccessful (st 155200)
Software Development s

¢ Practical and real-world tested
approaches to software development

¢ Implement effective communication
and risk reduction throughout

a software project

¢ Easy-to-learmand-Gasy-to-apply
measurement technique in everyday
language to measure product and

process goodness

Scott E. Donaldson
(3%) Stanley G. Siegel o 2

WD A 5k K

-
#ﬁ*\ www_sclencep_com

R TG 0 M B

R RR 1T 2
(R B0 IR
Successful Software Development

. Scott E. Donaldson 2p :
(%) Stanley G. Siegel E

#4 & % B a

Pt =

E=. 01-2003-6694 2
" A& & N

A RGBSR A TER BRI ——SEE, LUEEIY) R ERE T 80 7 A2 id B2 o &)
RO, WA B, BHBR . WATRR. KESEEL P IR OB E R
LA sk R R A
AVANAEML, FETE, FHE WBI /f\ﬂﬁH’HJrfi”Q‘l%&ﬁ}VL"/l AR LS CREAIHH
I O A A AT T A BT AT BN BRI R

English reprint copyright©2003 by Science Press and Pearson Education Asia Ltd.

Original English language title: Successful Software Development, 2™ Edition by Scott E. Donaldson and
Stanley G. Siegel, Copyright©200]

ISBN 0-13-086826-4

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Fducation, Inc., publishing as Prentice Hall
PTR,

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

BURE TP e ARSI OS] B idh . 30 S AT BOCRD b [B & v b IX D 49548 AT

A5 BHTWGA] Pearson Education (K$/F 8T HAREUD BOLWI MRS, TARS #A (18,

B #E R B (CIP) B

I RARAETF A= Successful Software Development / (%) 444 (Scott E. Donaldson) 4§43
UL —Jdbst: R HRREL, 2004
CRRAE LR ik
ISBN 7-03-012472-3
Vol LM NLEAIFR—%L V. TP311.52
IR BRCACKE 150 CIP $di i 7 <2003) 3 099954 5

Fulm it BRI/ FTIEmE ARE

FALEP) B AR/ @RI CRAE

4 4 2 B ¥ LR
L5 SRR B 164

HEX #7175: 100717
http:// www . sciencep.com

"R EN W EW'J

B R A A T B 14
*
20041 HE — M JEA: TRTX960 1/16
2004 471 JIET - IR ER R Elgk: 46 1/4
CH#c: 13 000 FH: 718 000

Efft: 78.00 7T
Iy VB E MV RE, B S SR U B <R i)

FEVRI S

CEAN TR 20 Al 60 SR LN BT I CARAEfENLT iR BRI S .
SRR TR O \‘/H]foMH Hk A, LR A p b . Jorp gy N H
THSERLERY . B0y, TREAREFEERPER SN k. HMIX - MR I DOk, At
R Fiik M 60 Jf-ﬂq%}b,l,.i:f,“:”] g T T O R, R 70 R gk M ik
WAk 80 AR SIAR X R AL, BLAMA FNAArimm X & 1k, & T HRAMR
ARV REAT ISR AR R, AR T H AT TN SRR R BT B M R SR e 11 o B SR TR I H
W7, SIS RS 2RI X, [EAMAR 4 b RIS s R EE T
MO IR ZAR) R BRI &R, IRFE s B PR T R . R BIISMAE R
iy e f'ﬂﬁleWﬁéH (Pearson Education Group) i 1 - 2o 8 T #5 ik B L&
VERT AR SEED R R, DU E IR R IR T RR I A IR R R sh &, RIS &K
MIRIHAERAG . DUR XA AR S 2 e, DU s ﬁ)if%

{t Internet) V2 AR, SRAFAREAT f@)fii’_ﬁiﬁfﬂ’ﬂiﬁnna AT R WA 2 R
SRR R 3E PE A9 e Scott E. Donaldson #1 Stanley G. Slegel EgGREN
ORIA A TR (Successful Sofiware Development) -~ M “Bf{t R R e
NNk, SINT A KT R TT R I PR R —— RS LR (Systems
Engineering Environment, SEE) . ZHR G S B RKEAE R B imIrE
SRS R, LRI P HARI R AR . IS8 R, bt T fid Feeh 6 B 05 5
IRCWBCTED 6 Tl S il REEAT T IB IR I o {5 A T & AT RA 61 2 B N 380bA

AT TRZ DU HERR R, OB —— TR o BT Ry - 43 80 7 300 (R
Ao AR BRI RUR B o, - RAC AN TR R K M5 338 T 22, Ralph
R. Young i) (f7FRH1D (Effective Requirements Practices) 15 M HFIH A B
ASSOREFIE 1 0 FR 0 PO 26 i) BB, 43 b) 400 A3 BT LR T 5 BE & B Rt A sk 4 HT
[HE 5 P Rt PR I8 o 3 PRI 4, LSRRI T R % R %5 Tk, F i b i
FC 75 A Y I, AATRT ST Ao i b AT R T L 9 7 6, R A AN IR E] R D SRR R A e
TR BN AT ISR AL
NUBIV-ONATE S W CAV R [PlikPss GRS (GL: . W (EF/ N 2 (10 k= (X Wb
FRETR BT R AR KRS AR A -1 (VR T ALY . Mary Shaw R David
Garlan [P CA R R 450D (Sofiware Architecture: Perspectives on an Emerging Discipline)
B AICRE AT AT 2 A D R G ARG f Y R BT A R T A . 1 A
BT AR ARET AR (R AR AL HO6E B T4 (10 S 00 £ 0104 30 05145 WL mméku?ﬂmMﬁ

IR R R ML TR A BT RExd B B A SH B B R S LA R, (AR I st
B IS RIVEN S R IR H R K FAENIRE Ao rh 2 B — B F I T, M
BB R TR RGN, ARG ZEY R IR R N ik, T
HONM S, ABTLMES “BEEREN” RRMEM, BRE R W TR 8 “%kiit
it ” BRRERRN e b

XFELAE O R N R T0 H B HE A Ok Bt Joel Henry 1) (815 H &5
H) (Software Project Management. A Real-World Guide to Success) Ni%ii e — At 12
MUt BHRR T HRATE PN EAMRES. A, 8. TAMERER, *
[i B PR U P AT LARE FH B 438 vk, 800 SE N A B (R, R A A
BT TS S, BT ESHE T, bEB PR SEAMS
W E 75 VAT TOB MR . R MRTX L 1) B 518 Xl AT S B 4 2 H 3,
REVF, EARRMARERACFIEE, MEHEAABPEISEE.

AT R A IS RAE B A S, SO R BRI, MBIy 8, Winalicm
FRAS o BRAF IR 0 0P o 61 BE S AT T 8 R B T A R R, RT3 3 T
BRSNS 2 R EBS A . Karl E. Wiegers (] (B EIEVERHY (Peer Reviews in
Software) BUEAT XX TR MG B M. ARNET KRG IFFHK SR, WA
BB R IE AN AR IR VP o7 7 R B R AR R 75 . b b AR I H R IT A [Bt 45 53 B
SEOL TR GERE T 7L 15 T EEEmS, AT REB I AT LA
WITEIR A SR P e 1R, MEETFR A R I, R A B R s

THY 151 %o B AR 1) B L 28 R e 1 3 75 1) BsF 8 She s 22 £ 5 26 35 £ 351) 3347
EN R WO VF 2 R R R AR SME L. WA TET S, SREERLmEEE
FHIW . AT P B R LR R 32, XS E T B R REii
LA BE AR AR S, (HRS IR0 H S b BB AT 0 RO B HLE S S R 40
WA, Alistair Cockburn [% 82 8K 18- 35 H K 4 v 1)y (Surviving Object-Oriented
Projects) A5k LUK B £ 5K S YR 2 3 1) 2 SR 410 A TH A8 BN 52 8K 1R 051) g S) 4
SR B RO H R AR, I IE % T R R R R Hehig
H TS ST BT W P 9 7 AU, S XN) e R A G AR S A G AL,
S EER AT TR, BT R . T XS SR AE IR B S B S
M, AHNRE-AMYEENSZS, 0 LAERDH I 5

PLLBURE HATXERARM BROABAZR. HEIEHNE, XEMNFIFE— A
FIER. BEEROT TRMENR R, DRI 5 2 5 1 5 R 504 A 7 33, FAHR
CHTRER: 52 37 4075 B ik a0 ik X TIX T A B AT AR R BR SR R R A 1T
HERBEY, ARG .

% #
2003 % 11 A

Preface

We must not promise what we ought not, lest we be called on to perform what we cannot.

—Attributed to Abraham Lincoln, speech delivered before the first
Republican convention of Illinois, May 29, 1856, The Writings of
Abraham Lincoln, ed. Arthur B. Lapsley, vol. 2, p. 249 (1905).

Successful Software Development means “the
ability to produce ‘good’ software systems
‘consistently””

Customers want software systems to do what they are supposed to do, to be de-
livered on time, to be delivered for the agreed-upon cost, and to satisfy any
other criteria they may specify. Sellers want the systems they develop to do
what the customer wants, to be delivered ahead of schedule or on time, to earn
them a reasonable profit, and to satisfy any other criteria that may govern the
way they do business. Software systems satisfying both customer and seller cri-
teria are “good.” Customers and sellers also want their criteria satisfied “con-
sistently.” The software development business should not be a lottery.

This book is a practitioner’s guide for achieving successful software
development.

Making It Happen means “implementing a
‘way’ of successful software development”

There is no one “way” to develop software systems. If there were, software
systems development would have been reduced to an assembly-line process
long ago. People with diverse experiences and educational disciplines

vii

preface

contribute to advances in software development methodologies, processes,
techniques, practices, and tools. This rich diversity brings about different
“ways” to develop “good” software systems “consistently.”

This book is a practitioner’s guide for making successful software devel-
opment happen in a way that makes sense for your environment.

Who Should Read This Book?

The software development business is centered on a relationship between a
customer and a seller of software products and services. So, this book is for
both software customers and software sellers. More specifically, the intended
audience is anyone who performs one or more of the following activities:

Develops software products and software-related products
Directly manages people who do the above

Manages the above managers

Buys/uses products from the above

Educates the people above

* & & o o

Individuals have used the first edition of this book to complement their par-
ticular expertise. Customers have used this book to refine their business deal-
ings with sellers. Sellers have used this book to establish or refine their “way”
of developing software systems for their customers. Sellers have also used the
book to provide in-house training to their marketing personnel so the mar-
keters better understand what their businesses are selling. Customers and
sellers have used the book to train their human resource personnel so they
better understand what skill sets are needed for the software development
business. Universities have used the book in graduate schools to teach how to
be successful in the software development business.

For the software customer, we explain and illustrate mechanisms to effec-
tively communicate to the software seller (1) what you want, (2) when you
want it, and (3) how much you want to pay for it.

For the software seller, we explain and illustrate the mechanisms to effec-
tively communicate (1) to your customer your understanding of what the cus-
tomer wants and (2) among your project team members how you are going to
give the customer what the customer wants.

For the educator, we provide supplemental training materials for the class-
room. This material is packaged in a separately available study guide that
consists of the following items:

viii

preface

¢ Over 500 pages that recast the book’s contents as presentation material.
This material is organized by chapter and lays out the material in the order
that it appears in the chapter. Most of the book’s figures, or adaptations of
these figures, appear in this material.

¢ Sample questions for homework assignments.
¢ Sample class project.
¢ Sample course syllabus.

Educators can use the above material in conjunction with the companion Web
site at www.phptr.com/ptrbooks/ptr_0130868264.html to develop courses
based on the book’s material. These courses can be part of a corporate train-
ing program or a college or university curriculum. The study guide material
is adapted from our teaching experience in both of these environments.

Regarding the presentation material in the study guide, we note that students
can use this material without an instructor as a companion to the book. Exam-
ple uses of this material as a companion to the book include:

¢ Before reading a chapter or part of a chapter from the book, the student can
go to the corresponding study guide pages to get a quick look at the chap-
ter or chapter part.

¢ While reading a chapter or chapter part, the student can, in parallel, look at
the corresponding study guide pages. Sometimes a different look at the
same material can facilitate learning.

¢ After reading a chapter or chapter part, the student can go to the corre-

sponding study guide pages for review purposes and quickly recall key
points, concepts, and book illustrations.

How Is This Software Development Book Different
from Other Such Books?

Lots of things go into making successful software development happen.
Among the important things, effective communication, risk reduction, and an or-
ganizational “way” of successful software development stand out and are threaded
throughout this book.

Effective communication means “transmitting information, thought, or feeling
so that it is satisfactorily received or understood [emphasis added].”! At the risk

'This definition is adapted from words used in one of the definitions for “communicate” given in Mer-
riam-Webster's Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000). We
note that some dictionaries include the notion of “effective” in the definition of “communicate” (see,
for example, Webster’s Il New College Dictionary {Boston, MA: Houghton Mifflin Company, 1995); this
dictionary actually comments on the notion of “effectiveness”). We have chosen to risk redundancy in
the eyes of some by coupling “effective” to “communication.” Our rationale is that we want to stress
the notion that the person who transmits information, thought, or feeling is obliged to carry out this
transmission so that it is, in fact, satisfactorily received or understood.

preface

of oversimplification, people understand the mechanics of creating software
code, but both the customer and seller have trouble understanding each
other. Customers have said, “We thought we told the developers what we
thought we wanted, but what they delivered is not what we wanted.” Sellers
have said, “We thought we understood what the customer was trying to tell
us, but come to find out, what we delivered is not what the customer
wanted.” Therefore, for us,

Successful software development is first and foremost an ongoing
exercise in effective communication between the customer and the
seller throughout a software project.

Risk reduction means “reducing the likelihood that software systems develop-
ment products will (1) not be delivered on time, (2) not be delivered within
budget, and (3) not do what the seller and customer mutually agreed that the
products are supposed to do.”

Simply stated, people understand there are risks with creating software code.
However, many people do not assess risk, allocate appropriate resources to
mitigate risk, monitor risk, and decide how to deal with risk. Customers have
said, “We don’t have documented requirements, but we expect the system to
do what it is supposed to do.” In response to such customer requests, sellers
have said, “No problem! The software should do what you want and we will
deliver it on time.” Therefore, for us,

Successful software development is also an ongoing exercise in risk

An organizational “way” of successful software development means “a set of
processes that an organization uses to develop and maintain software and
software-related products.” We proceed from the premise that, as we said
earlier, there is no one way to build software systems. Again, at the risk of
oversimplification, customers have said, “We don’t have time to stop and
plan the work to be done, just get started coding.” Sellers have said, “We
know what the users need, so let’s get started.” Therefore, for us,

A “way"” of developing software systems consists of processes that
(1) promote effective communication throughout software systems de-
velopment and (2) continually reduce risk,

We present processes based on fundamental engineering and process princi-
ples that include (1) project planning, (2) change control, and (3) product and

preface

process reviews. We present a language-based measurement technology’ for
evaluating software processes and the products they yield. We explain how
to use such measurements to improve your processes and products. We ex-
plain how to plan process improvement to heip bring about improvement in
the way you develop software systems. We explain why the ideas presented
work, give you suggestions on how you can make them work, and offer in-
sights into what may not work.

An organizational “way” of doing business needs to incorporate such things
as the lessons learned from people’s experiences and previous software
development projects. If the organizational “way” includes such experiences
and lessons learned, known and/or anticipated risks are reduced, but not
necessarily eliminated. Also, effective customer/seller communication re-
duces misunderstandings, thereby reducing the risk that a software product
will not satisfy its criteria.

This book, therefore, presents you with techniques for effectively communi-
cating and reducing risk. We explain and illustrate fundamental engineering
and process principles for you to consider when Making It Happen in your
environment.

We stress that these techniques have been successfully implemented on real-
world software systems development projects and programs. The size of
these projects and programs ranges from tens of thousands of dollars to
hundreds of millions of dollars.

How Is the Book Organized?

Figure P-1 shows the title and purpose of each of the book’s eight chapters.
More specifically, these chapters address the following topics:

Chapter 1 The first chapter presents the business case for setting up a “con-
sistent” way of doing software systems development. The chap-
ter also presents some fundamental concepts and terms used
throughout the book. These terms and concepts establish a work- .
ing vocabulary to facilitate effective communication.

Chapter 2 The second chapter presents techniques for project planning and
reducing risks. Many organizations develop project plans and
then start working. For us, planning is just one part of an organi-

r,

zation’s “way” of developing software systems.

Chapter 3 The third chapter presents an organizational “way” (or process)
for developing software systems—an organizational software

Here, language-based measurement technology means “a measurement technology that associates lan-
guage familiar to the intended audience with numbers arranged on value scales.”

Chapter 1

Business Case

Chapter 2
Project Planning
Process

Chapter 3
Software
Systems
Development
Process

Chapter 4
Change Control
Process

Chapter 5
Product and
Process
Reviews

Chapter 6
Measurement

Chapter 7
Cultural Chgnge

; Process
Improvement
Planning

Purpose

Makes the business case for setting up a consistent way of doing software
systems development and introduces fundamental concepts needed for the rest
of the book.

Provides practical guidance for effectively planning software systems
development work by factoring in project risks to allocate project resources.

Defines principles for putting together an organizational software systems
development process that fosters success and illustrates these principles by
defining a top-level process that you can use to formulate a process framework
for your environment.

Defines change control board (CCB) mechanics and provides practical guidance
for setting up a CCB for your software systems development process; the CCB is
the most critical process element because it addresses the communications
prablems that plague any software project.

Describes basic processes associated with the various reviews called out in
Chapter 3 as a means for reducing software systems development risk, thereby
enhancing the likelihood of success.

Provides practical guidance for measuring the “goodness” of products and the
“goodness” of the software systems development process that produced the
products. The focus is on how to use measurement to achieve consistent
product and process “goodness”—that is, to achieve successful software
systems development.

Addresses human issues bearing upon organizational cultural change during
implementation of your systems engineering environment (SEE), where the SEE
defines your desired way of engineering software systems.

Provides practical guidance on how to write an SEE implementation plan to
establish the framework for doing the things discussed in the preceding
chapters.

Figure P-1 This eight-chapter book, organized as shown, gives you practical and proven guidance for answering the gues-
tion, “How can you make successful software systems development happen?”

xii

Chapter 4

Chapter 5

Chapter 6

preface

systems development process. In effect, this “way” of doing busi-
ness helps to set the stage for the rest of the book. There are many
“best practices” for software development. The question is, “How
do these practices interface with one another?” The organizational
“way"” presented consists of a set of related processes that em-
body fundamental engineering and process principles that specif-
ically address effective communication and risk reduction. The
organizational “way” presented contains a project planning
process, a change control process, product and process review
processes, and a measurement process. We define and explain
roles, responsibilities, activities, and communication linkages. We
present this “way” of developing software systems for your
consideration when defining your way of doing business. We
stated above a key principle regarding software development—
successful software development is an ongoing exercise in risk re-
duction. In the third chapter, when we present a “way” for
developing software systems for your consideration, we stress the
following corollary to this key principle:

If you decide under certain particular circumstances that
it may make better sense not to follow your organizational
way of doing business, then you should keep in mind that
you might be increasing software systems development risk.

No matter how well a project is planned, it is almost axiomatic
that things will change once the project gets underway. There-
fore, the fourth chapter presents the fundamental process of
change control. This chapter also addresses the communications
problems that plague any software systems development project.
Sometimes the customer believes that the requirements were ef-
fectively communicated to the developer. Sometimes the devel-
oper believes the customer requirements were understood.
Subsequent to developer implementation of the requirements,
the customer and developer may have vastly different perspec-
tives regarding requirements satisfaction. This chapter offers
guidance for reducing the likelihood of such disconnects arising
In your environment.

For us, “consistent” software development involves the systems
disciplines of management, development, and product assur-
ance. The fifth chapter presents product and process reviews
from the perspectives of these three systems development disci-
plines. This chapter focuses on how reviews help customers
and/or sellers gain visibility into project progress and risk so that
intelligent, informed decisions can be made with respect to what
needs to be done next.

Measurement for the sake of measurement is a waste of time and
resources. The sixth chapter presents practical guidance on how

Xiii

preface

to express meaningful measurement in everyday language that
the intended audiences agree to and understand. Meaningful
measurement contributes to (1) successful software systems de-
velopment projects and (2) improvements in the “way” software
systems are developed.

Chapter7 Pressures such as competition generally push organizations to con-
tinue to improve their skill sets, processes, and products. The sev-
enth chapter addresses people issues associated with maturing the
organization’s “way” of doing business. Getting software systems
development processes on paper to document this “way” is a chal-
lenge. However, getting people in the organization to help build
this “way” and then follow it is an even more imposing challenge.
We present ideas for how to deal with this challenge.

Chapter8 Finally, the eighth chapter presents guidance for planning im-
provements to your “way” of developing software systems. This
chapter helps you select concepts from the preceding chapters to
develop a process improvement approach. We discuss how to fac-
tor lessons learned from following your “way” of doing business
or from not following your “way” into improvement activities.
Also, we present other candidate practices for your consideration
for improving your “way” of developing software systems.

Table P-1 highlights in more specific terms what you will learn from each
chapter.

Table P—1 “CHafitee Hightights: 7 s ‘ TR
Chapter Title and Purpose What You Will Learn

1 Business Case—{(1) makes the business * What successful software development means.
case for setting up a “consistent” way of » Why investing in software process
doing software systems development improvement to achieve consistently “good”
and (2) introduces fundamental con- products makes good business sense.
cepts needed for the rest of the book. ® Business way refinement/transformation

is first and foremost a cultural change exercise.

= Successful software development must be a
customer/seller partnership, where the “seller” is
the software systems development enterprise and
the “customer” is the buyer/user of what the seller
provides.

* The ideas in the book are scalable—they apply to
customer/seller partnerships of almost any size.

¢ The ideas in this book encompass customer /seller
partnerships in any business environment (e.g.,
commercial, government).

* Why the software development business does not
have to be a lottery.

xiv

Table P-1
Chapter

Title and Purpose

preface

What You Will Learn

1

Business Case (continued)

Project Planning Process—provides
practical guidance for effectively
planning software systems develop-
ment work.

* Why successful software development is not
inextricably tied to individual heroics to get the job
done.

* Why there is no one way to build software systems
and how this viewpoint influences the way to
achieve successful software development.

* Why prescriptively applying an organization’s
business way makes good business sense.

* What “prescriptive application of an organization’s
business way” means and why prescriptive
application holds the key to institutionalizing the
business way.

* Definitions of key terms needed for the rest of the
book (e.g., software, software process, software
process capability, software process maturity,
prescriptive application, product and process
“goodness,” software process improvement, life
cycle, culture).

* The role of organizational commitment in making
successful software development happen.

* Effective customer/seller communication is a key
element of successful software development.

* A key mechanism for effecting good customer/
seller communication is the change control
board (CCB).

* People are the most important success factor—not
automated tools.

* Requisite software systems development
disciplines for achieving success—management,
development, product assurance.

¢ Obstacles to effecting cultural change.

* Making software development success happen
extends far beyond (1) management edicts,

{2) assembling a team of experienced and good
people, and (3) a five-minute conversation with a
customer and a three-week coding frenzy.

* Alternative approaches to refining /transforming an
organization’s business way.

* A systems engineering environment (SEE) provides
a means for making successful software
development happen—whether systems are
developed sequentially or in parallel.

* The SEE consists of a process component
(application development process environment
[ADPE)) and a technology component (ADTE).

* The project plan is a living contract that binds
the customer /seller partnership by setting
forth the work that the seller’s management,
development, and product assurance
disciplines accomplish and the customer’s
management approves.

preface

Table P-1 CGiGSE W j
Chapter Title and Purpose What You Will Learn

2 Project Planning Process (continued) * Life cycle’s role in project planning.

* Planning is an ongoing negotiation between the

buyer/user and seller.

® How to account for the interaction among the
requisite disciplines—management, development,
and product assurance—throughout the project life
cycle.
How to plan for change.
Contrasting views of work accomplishment—ideal,
real, and realistic—and their impact on project
planning.
How to construct a simple, but powerful, risk
assessment approach for project planning use.
How to incorporate risk reduction explicitly into a
project plan budget.
How to construct a risk-reduced project plan.
How to develop an ADPE element defining an
organization’s project planning process.

3 Software Systems Development * Contractual agreements that can arise in the
Process—(1) defines principles for software systems development business.
putting together an organizationwide * How to write a “good” statement of work
software systems development process (SOW), where the SOW is a customer vehicle
framework that fosters success and for communicating to the seller what he/she
(2) illustrates these principles by wants.
defining a top-level process that you * How the seller can constitute a project team
can use as a starting point for defining and define associated responsibilities
a software development business way to accomplish project plan work.

for your environment. How the customer can effectively interact with the
seller project team.
How the seller can define a software systems
development process that (1) explicitly includes the
customer throughout the process and (2) can
incorporate any product development life cycle.
How to plug the seller organization and the
customer organization(s) into the software systems
development process so that both sides know how
business is to be transacted.
More about “prescriptive application” of the
software systems development process.
How to address process issues in those
environments where numerous software systems
development projects are unfold ing more or less in
parallel.
How does a life cycle plug into the software
systems development process.
How level of detail and organizational scope are
two major considerations in defining an
organizational software systems development
process.
* How the software systems development process
can plug into a systems development process.

*

xvi

preface

Table P-1 antified” s SN
' Chapter Title and Purpose What You Will Learn
3 Software Systems Development Process ¢ How to design a form that helps track a product as
(continued) it winds its way through the software systems

development process.

What are the responsibilities of the customer and
the seller after the seller delivers the product to the
customer.

How to develop an ADPE element defining an
organization’s software systems development

process.
* Why this element is a good place to begin setting
up an ADPE.
4 Change Control Process—defines change ~ » Why miscommunication can plague any software
control board (CCB) mechanics and systems development project.
provides practical guidance for * How the customer and seller can have dramatically
setting up CCBs for your software different views of the state of a product and
projects. what to do to reduce the likelihood of such

different views arising,

How to manage unplanned change as well as
planned change.

Why management of all change is crucial to
achieving successful software systems
development.

How the need for managing all change mandates a
CCB concept that extends far beyond the traditional
configuration management control board concept.
Change control mechanics of the software systems
development process.

How to establish seller and customer accountability
through the CCB.

The three scenarios governing all of change contro:
1. Do we want something new or different?

2. Is something wrong?

3. Should we baseline the product?

CCB mechanics (e.g., what to record at CCB
meetings, CCB role in traversing a project life cycle,
who should be the CCB chairperson, what should
be the CCB voting mechanism, what is contained in
a CCB charter, how is a CCB meeting conducted,
how frequently should the CCB meet).

* The information requirements for CCB minutes.
How to write CCB minutes.

When are CCB hierarchies appropriate and how
they should be set up.

How to design change control forms that make
sense for an organizational way of doing business.
How to develop an ADPE element defining the
workings of CCBs in a software systems
development process.

Xvii

preface

Table P-1 t .' inued o
Chapter

What You Will Learn

5 Product and Process Reviews—describes ® Principles pertaining to the purpose of reviews.

the basic processes associated with the * How to resolve key issues regarding

various reviews called out in Chapter 3 the review process invotving peers.

as a means for reducing software The mechanics of document reviews and

systems development risk and thereby acceptance testing that an independent

achieving success. product assurance organization conducts.
How to make software requirements testable so
that the software systems development process can
be brought to a successful conclusion.
What a software audit is and its relationship to
reviews.
The key role that acceptance testing plays in
harmonizing seller and customer understanding of
what the delivered software system and supporting
databases are to contain.
Senior management visibility needs and how
reviews can help meet these needs.
How technical editing can be incorporated into the
software systems development process to help
prevent compromising good engineering work.
Technical editing suggestions that can be used as a
starting point for constructing an organizational
technical editing guide.
How to develop ADPE elements addressing (1)
independent product assurance, (2) peer reviews,
and (3) the acceptance testing cycle.

*

[

*

6 Measurement—provides Knowing when it makes sense to try to improve
practical guidance for measur- the software systems development process.
ing product “goodness” and the How to avoid “measurement for the sake of

“goodness” of the software systems measurement” activities.

development process that produced the * How to use an easy-to-learn and easy-to-apply
products. The focus is on how to use measurement technique, called Object
measurement to achieve consistent Measarement, that you can use to measure
product and process “goodness.” almost anything, including product

and process “goodness.”

How to establish benchmarks to give meaning

to product and process measurements.

How to measure customer satisfaction.

How to quantify the concept of product integrity as a

means for assessing software product “goodness.”

* How to extend the quantified product integrity
concept to the software systems development
process domain to assess process “goodness.”

* How to use the product “goodness” metric to track
product evolution through the software systems
development process to head off product
development problems.

* How to set up value scales for measuring product
and process “goodness” in any environment.

* How to measure the “goodness” of the process
described in Chapter 3.

xviii

