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Uunct 1
TEXT

Random Processes

To determine the probabilities of the various possible outcomes of an experiment, it
is necessary to repeat the experiment many times. Suppose then that we are interested in
establishing the statistics associated with the tossing of a die. We might proceed in either
of two ways. On one hand, we might use a single die and toss it repeatedly.
Alternatively, we might toss simultaneously a very large number of dice. Intuitively, we
would expect that both methods would give the same results. Thus, we would expect that
a single die would yield a particular outcome, on the average, of 1 time out of 6.
Similarly, with many dice we would expect that 1/6 of the dice tossed would yield a parti-
cular outcomet™ .

Analogously, let us consider a random process such as a noise waveform n(t). To
determine the statistics of the noise, we might make repeated measurements of the noise
voltage output of a single noise source, or we might, at least conceptually, make simulta-
neous measurements of the output of a very large collection of statistically identical noise
sources. Such a collection of sources is called an ensemble, and the individual noise
waveforms are called sample functions. A statistical average may be determined from
measurements made at some fixed time t = t, on all the sample functions of the ensemble.
Thus to determine, say, n?(t), we would, at t=t,, measure the voltages n(t,) of each
noise source, square and add the voltages, and divide by the (large) number of sources
in the ensemble. The average so determined is the ensemble average of n?(t,).

Now n(t,) is a random variable and will have associated with it a probability density
function. The ensemble averages will be identical with the statistical averages and may be
represented by the same symbols. Thus the statistical or ensemble average of n?(t,) may
be written E[n*(t,)]=n?(t,). The averages determined by measurements on a single sample
function at successive times will yield a time average, which we represent as (n?(t)).

In general, ensemble averages and time averages are not the same. Suppose, for
example, that the statistical characteristics of the sample functions in the ensemble were
changing with time. Such a variation could not be reflected in measurements made at a
fixed time, and the ensemble averages would be different at different times. When the
statistical characteristics of the sample functions do not change with time, the random

« ] .



WA 5B TA5 LA KB

process is described as being stationary. However, even the property of being stationary
does not ensure that ensemble and time averages are the same. For it may happen that
while each sample function is stationary the individual sample functions may differ statisti-
cally from one another. In this case, the time average will depend on the particular sample
funétion which is used to form the average. When the nature of a random process is such
that ensemble and time averages are identical, the process is referred to as ergodic. An
ergodic process is stationary, but, of course, a stationary process is not necessarily erg-
odic.

Throughout this text we shall assume that the random processes with which we shall
have occasion to deal are ergodict? . Hence the ensemble average E{n(t)} is the same
as the time average (n(t)), the ensemble average E{n?(t)} is the same as the time av-
erage (n?(t)), etc.

Autocorrelation

A random process n{t), being neither periodic nor of finite energy has an autocorrela-
tion function

R(r)=|imijm n(Hn(t+odt (1.1
TJ) 12

Tco

In connection with deterministic waveforms we were able to give a physical signifi-
cance to the concept of a power spectral density G(f) and to show that G(f) and R (z)
constitute a Fourier transform pair. As an extension of that result we shall define the power
spectral density of a random process in the same way. Thus for a random process we take
G(f) to be

oo
G(H=FLR(]= R(t)e *tdqr 1.2

—o0

It is of interest to inquire whether G(f) defined in Eq. (1.2) for a random process has a
physical significance which corresponds to the physical significance of G(f) for determinis-
tic waveforms.

For this purpose consider a deterministic waveform v(t) which extends from — oo to
+ . Let us select a section of this waveform which extends from — T/2 to T/2. This
waveform v (t) = v(t) in this range, and otherwise v;(t) =0. The waveform v:(t) has
a Fourier transform V:(f). We recall that | V. (f)|? is the energy spectral density; that
is, | V+(f)]2df is the normalized energy in the spectral range df. Hence, over the interval
the normalized power density is | V;(f)|2/T. As T—>oo, v, (t)—>v,;(t), and we then
have the result that the physical significance of the power spectral density G(f), at least
for a deterministic waveform, is that

GUFWm%WADV (1.3)
T—+o0

Correspondingly, we state, without proof, that when G (f) is defined for a random
e 2 .



Unit 1 Random Processes

process, as in Eq.(1.2), as the transform of R(z), then G(f) has the significance that
G(f)=limE{iTINT(f)|2 (1.4
T+

where E{ } represents the ensemble average or expectation and N (f) represents the Fourier
transform of a truncated section of a sample function of the random process n(t).

The autocorrelation function A(z) is, as indicated in Eg. (1. 1), a time average of the prod-
uct n(t) and n(t+ 7). Since we have assumed an ergodic process, we are at liberty to perform
the averaging over any sample function of the ensembie, since every sample function will yield the
same result. However, again because the noise process is ergodic, we may replace the time
average by an ensemble average and write, instead of Eqg. (1. 1),

R =E{n(t)n(t+7)} (1.5)
The averaging indicated in Eq. (1.5) has the foliowing significance: At some fixed time t,
n(t) is a random variable, the possible values for which are the vaiues n(t) assumed at
time t by the individual sample functions of the ensemble. Similarly, at the fixed time
t+z,n(t+7) is also a random variable. It then appears that R(r) as expressed in Eq.
(1.5) is the covariance between these two random variables.

Suppose then that we should find that for some 7, R(z) =0. Then the random varia-
bles n(t) and n(t+ ) are uncorrelated, and for the gaussian process of interest to us,
n(t) and n(t+ ) are independent. Hence, if we should select some sample function, a
knowledge of the value of n(t) at time t would be of no assistance in improving our ability
to predict the value attained by that same sample function at time t + 37

The physical fact about the noise, which is of principal concern in connection with communi-
cations systems, is that such noise has a power spectral density G(f) which is uniform over all
frequencies. Such noise is referred to as “white” noise in analogy with the coﬁsideration that
white light is a combination of all colors, that is, colors of all frequenciest! , Actually there is an
upper-frequency limit beyond which the spectral density falls off sharply. However, this upper-
frequency limit is so high that we may ignore it for our purposes.

Now, since the autocorrelation R(z) and the power spectral density G(f) are a Fou-
rier transform pair, they have the properties of such pairs. Thus when G(f) extends over a
wide frequency range, R(z) is restricted to a narrow range of ¢. In the limit, if G(f) =/
(a constant) for all frequencies from — co<Cf<C{+ oo, then R(¢) becomes R(z) = I§(z),
where 8§ () is the delta function with 6 (z) =0 except for - = 0. Since, then, for white
noise, R(r) =0 except for =0, EQ.(1.5) says that n(t) and n(t+ ¢) are uncorrelated
and hence independent, no matter how smail .

Power Spectral Density of a Sequence of Random Pulses

We shall occasionally need to have information about the power spectral density of a
sequence of random pulses. The pulses are of the same form but have random amplitudes
* 3 .
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and statistically independent random times of occurrencet®. The waveform (the random
process) is stationary so that the statistical features of the waveforms are time invariant.
Correspondingly, there is an invariant average time of separation T between pulses. We
further assume that there is no overlap between pulses. _

If the Fourier transform of a single sample pulse P, (1) is P,(f) then Parseval’s theo-
rem states that the normalized energy of the pulse is '

oo 4o
E = * P.(H Py (Hdf= j~ | Py (H|2df (1.6)

The energy in the range df at-a frequency f is
dE, = | P,(H|*df ‘ 1.7
Now consider a sequence of n successive pulses. Since we assume that the pulses do not
overlap, the energy in the range df at the frequency f due to the n pulses is:
dE=dE, +dE; + o+ +dE, ={| P (D |2+ | P (D |2+ -+ |P,(D|2}df (1.8)
The average value [P(f)[? of the sequence of n pulses is, by definition

TBCH 2=%{|P,(f)lz+ [Py (|2 + ot | P, (P2} (1.9)

so that dE in Eq. (1.8) can be written
dE=n [P(H]2df (1.10)

The average time of separation between pulses is T, so that n pulses will occur in a time nT,.
The differential energy in the band df contained in the time interval nT, is, from Eqg.(1.10)

de _ 1

nT, nT,
The power spectral density in the frequency range df is G(f) = (dE/nT.)/df. Hence,
from Eq. (1.11), G(f) is;

n |P(f)|2dr=Tl|P(f)|2df (1.11)

G(r)=Ti|P(f>|2 (1.12)

Hence, whenever we make an observation or measurement of the pulse waveform which
extends over a duration long enough so that the average observed pulse shape, such as
their amplitudes, widths, and spacings are representative of the waveform generally, we
shall find that Eq.(1. 12) applies.
In the special case in which the individual pulses are impulses of strength /, then,
since in this case P(f) =/, we shall have.
I2

G(f)=T —oo<f<l+ (1.13)
NEW WORDS
1. outcome ['autkam] n.&8] &5
2. statistics [stotistiks] n. g EiRFE R

u4t
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statistic
statistical
3. toss
4. die
dice
5. intuitive
intuitively
6. analogously
7. conceptually
8. simultaneous
9

. collection
10. identical
11. individual

12. ensemble
(ensemble average

13. variable
(random variable

14. stationary

15. ergodic
(ergodic process

16. deterministic

17. normalize
normalized

18. expectation

19. product

20. truncate

21. periodic

22. covariance

23. uncorrelated

24. uniform

25. overlap

26. separation

27. spacing

PHRASES

1. random process
2. on the average

[statistik]
[sta'tistikal]
[tos]

{dai]

[ dais]
(in'tju(:)itiv]
Cin'tju(:)itivli]
[o'naelagesli]
[ken'septjuali]
[isimal’teinjas ]
[ko'lekfan]
[ai/dentik(e)l]
[iindi'vidjusl]

[a:n'sa:mbl]
['vesriobl)

['steif(a)nori]
[9: /gi)dlk]

[diita: mi nistik]
['no:molaiz]
['no:malaizd]
[iekspek'teifon]
['prodokt]
['trapkeit]

[ piari'adik]
[kou'veorians ]
[an'korileitid]
['ju:nifo:m]
[iouva'lep ]
[sepa’reifan]

['speisig]

adj. gt L8 n. Gt E
adj. ity , it m
v. 85,85

n. 8+ (pl. dice)
n.#&T; vi. BT
adj. HHE M EMK
adv. H 0 #b ; B W
adv. 24, 3 Hoth
aav. &

adj. [RlBt Y , 6 Bt & A
n. %4,

adj. [@l—#y, FEER
adj. i, Bk

n. &, fik

£FHD

n.BE ;0

REHLAE B

adj. FE i)

adj. £/ 85§
BEFAELER R FEE)
adj. Bt

vt AR AELL , AR AL
adj. A&y, IH—4b i
n. HEGED

n. M

vt BB

adj. Ay

n. oIy

adj. RHHXM

adj. ¥ 5K, — B
v.(FHES

n. 85, BB

n. [a] & , (8] BE

B L 7R
3, VPHEOTE; — Bt
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3. make measurement BFE
4. sample function A R
5. statistical average it ¥ (ED
6. probability density function HE 32 9% B o 3K
7. statistical characteristic g Bk
8. autocorrelation function B A5 5% R 3K
9. in connection with > < SRITRID s B B R
10. physical significance YHEEX
11. Fourier transform B2
12. power spectral density R EEE
13. be at liberty to(do) AT THEE
14. gaussian process (=1 FenH
15. physical fact SR EE
16. upper-frequency limit BEER
17. fall off TR, B
18. in the limit ERBIELT
19. delta function BRI L5 B R
20. random pulse BEAL (Z%HL) Bk wb
21. time invariant 97 N1 ]
22. Parseval’s theorem P 3T BL R &
23. statistically independent 5 a i YA
24. successive pulse piRed QU
25. be representative of zEr.NRERFE-- R4 1E

NOTES

[1] Thus, we would expect that a single die would yield a particular outcome, on the

(2]

average, of 1 time out of 6. Similarly, with many dice we would expect that 1/6 of
the dice tossed would yield a particular outcome.
B, AMETAPFH B ARTFLEA 1 AFAH L HER, L0k, EBRER
T, A 1/6 I RTFLEFHNKITHEER,
* out of (from among) & F“M oo P, B e
five out of six votes AV H LZA#RZ
* on the average F 3,45 3% H it K ; — ALt
Throughout this text we shall assume that the random processes with which we
shall have occasion to deal are ergodic.
EERERLF AMNBEZEFAAMN LRSS AH B4,
* occasion n, 3% 4, ML, ML
6 o
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have occasion # =+« =+ Wl Fl®..
have no occasion & &+ «e+ R EERA LT
e deal v. £ & ,##&
a book that deals with the Middle Ages. — A&+ # f a2 0t4£89 8
* random process B #Lit #2
(GE: MRS ERELTFREEEA S LG -TELE AR, T F LRE
MEXLFFELAAARREALFITRH 1)

[3] Hence, if we should select some sample function, a knowledge of the value of n(z)
at time ¢t would be of no assistance in improving our ability to predict the value at-
tained by that same sample function at time z+r.

H , MRBATEEFEEFEE (O WELE t BFZIBEPRER B TR A R R A
BREE t+ o B 2IR .
+ some adj. ¥— ,{F—,#l0.
He went to some place in Africa. fhZ|FEM FHEET
» knowledge of Xif.e--+- AR

[4] Such noise is referred to as “white” noise in analogy with the consideration that white
light is a combination of all colors, that is, colors of all frequencies.

XA RAERRE R, B UTF ARSI G TSRS GRS .
 analogy [o'neladzi] n. 2L, I, BN,
in a rough analogy B35l

[6] The pulses are of the same form but have random amplitudes and statistically inde-

pendent random times of occurrence.

XL Bk rp TR AR, (B B BEALNE B, H: B B BB P S 3H asr

EXERCISES

I . Please translate the following words and phrases into Chinese.
1. sample function 2. ensemble average
3. physical significance 4. a Fourier transform pair
5. deterministic waveform 6. in the limit
7. time invariant : 8. an upper-frequency limit
9. Parseval’s theorem 10. random pulses

IL. Please translate the following words and phrases into English,

1. BEHLT 2. GiitFH
3. BENLER 4. BAHXERE
5. MBEMAK 6. DhREHE
7. BMEFE R 8. EiridE
9. ¥R’ 10. giitasr
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11. B[ (E) 12. GEit4etE
13. &#EHETE 14. & KBk HL e RO
Fill in the blanks with the missing word(s).

1. The ensemble averages will be identical the statistical averages and
may be represented by the same symbols.

2. The averages determined by measurements a single sample function

successive times will yield a time average, which we represent as
(P (ty)).

3. Suppose, for example, that the statistical characteristics of the sample functions

the ensemble were changing with time.

4. For it may happen that while each sample function is stationary the individual
sample functions may differ statistically one another.

5. As an extension of that result we shall define the power spectral density of a ra -
dom process the same way.

6. Itis interest to inquire whether G(f) defined Eq. (1. 2) for a
random process has a physical significance which corresponds to the physical sig-
nificance of G(f) for deterministic waveforms.

7. Correspondingly, we state, without proof, that when G(f) is defined
a random process, as in Eq. (1.2), the transform of R(z), then G(f)
has the significance that

G(P = TmE{ L | Nr () I7].

8. Hence, if we should select some sample function, a knowledge of the value of n
(1) at time t would be no assistance improving our ability to
predict the value attained by that same sample function at time t + .

9. Hence,whenever we make an observation or measurement of the pulse waveform
which extends a duration long enough so that the average observed
pulse shape,such as their amplitudes, widths, and spacings are representative of
the waveform generally, we shall find that Eq. (1. 12)applies.

10. Let us select a section of this waveform which extends -T/2 T/2.
11. Since we have assumed an ergodic process, we are at liberty to (per-
form, performing) the averaging any sample function of the ensemble,

since every sample function will yield the same result.

V. Answer the following questions according to the text.

1. Please describe the relationship between the ergodic process and the stationary
process.

2. What are random pulses?

3. What is the relationship between the power spectral density G (f) and the

'80



