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Chapter 2
Circuit
Principles

Circuit Laws
Network Theorems
Nonlinear Networks

The emphasis so far has been on the behavior of individual components and the
ideal circuit elements that serve as models. Now we are ready to consider®
combinations of elements into circuits, using two well-known experiraental laws,
Our first objective is to learn how to formulate and solve circuit equations.

Circuits of considerable complexity or generality are called networks and
circuit principles capable of general application are called network theorems.
Some of these theorems are useful in reducing complicated networks to simple
ones. Other theorems enable us to draw general conclusions about network
behavior. This chapter focuses on networks consisting of resistances and steady
(dc) sources; later the theorems will be extended to include networks containing
other elements and other sources.

We start with linear networks, i.e., combinations of components that can be
represented by the ideal circuit elements R, L, and C, and ideal energy sources.
However, most electronic devices and many practical components are nonlinear.
Therefore, we consider how linear methods can be used in analyzing some
nonlinear networks, and we learn some new techniques applicable to nonlinear
devices.

Circuit Laws

The foundations of network theory were laid about 150 years ago by Gustav
Kirchhoff, a German university professor, whose careful experiments resulted in
the laws that bear his name. In the following discussion, a branch is part of
a circuit with two terminals to which connections can be made, a node is the
point where two or more branches come together, and a loop is a closed path
formed by connecting branches.
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Kirchhoff s Cutrent Lawe

To repeat Kirchhoff's experiments in the laboratory, we could arrange to
measure the currents in a number of conductors or “leads” soldered together
(Fig. 2.1a). In every case, we would find that the sum of the currents flowing

{#) A soldered connection {b) The cireuit model
Figare 2.1 Kirchhoft's current experiment.

into the common point (a node) at any instant is just equal to the sum of the
currents flowing out.

In Fig. 2.1b, a circuit model is used to represent an actual connection.. The
arrows define the reference direction for positive current where current is defined
by the motion of positive charges. The quantity “i,” specifies the magnitude of
the current and its algebraic sign with respect to the reference direction. If i
bas a value of “45.A,” the effect is as if positive charge is moving toward the
node at the rate of 5C/s. If i; = +5 A flows in a metallic conductor in which
charge is transported in the form of negative electrons, the electrons are actually
moving away from the node but the effect is the samne. If iy has a valuve of “~3 A,”
positive charge is in effect moving away from the node. In a practical situation
the direction of current flow is easy to determine; if an ammeter reads “upscale,”
current is flowing from the meter terminal marked + through the meter to the
terunmal marked —.

By Kir.ihoff's current law. the algebraic sum of the currents into a node at
any instent is zero. It is sometimes convenient to abbreviate this statement, and
write “Zi = 0, where the Greek letter sigma stands for “summation.” As applied
to Fig. 2.1b,

Ti=0=i+ig— b +i, @1

Obviously some of the currents may be negative.
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Example 1

InFig 22,ifi, = +5A4, = ~3 A and By Kirchhoff's current law,
iy = +2 A, what is the value of i3? Sim0=d iy —ig+ iy

Bi=0=pS5 3 —iyg42

= +5-3+2= 444

Note that we cauld just as well say that the algebraic
sum of the currents leaving a node is zerm

ia
Figare 2.2 Current calculation.

Kirchhoff’s Voltage Law

The current law was originally formulated on the basis of experimental data,
The same result can be obtained from the principle of conservation of charge
and the definition of current. Kirchhoff's voltage law also was based on experi-
ment, but the same result can be obtained from the principle of conservation
of energy and the definition of voltage.

Yo repeat Kirchhoff s observations about 100-0
voltages, we could set up an electrical cir- @) Resistor
cuit and arrange to measure the voltages
across a number of components that form
a closed path. Only a portion of the cir-
cuit is shown in Fig. 2.3, but the combina-
thon of a battery, a resistor, an inductor,
and the associated leads forms the desired
clesed path. In every case, we would find
that the voltages around the loop, when Figure 2.3 A voltage experiment.
properly combined, add up to zero.

The circuit model of Fig. 2.4 is more convenient to work with. There the ()

voltages are labeled and the + signs define the reference directivn for po-ive
voltage or potential difference. The quantity vy specifics the magnitrde . the
source voltage and its algebraic sign with respect to the 1eference. It ¢, has a
value of + 12V, the voltage of node b with respect to node a is positive. Since,
by definition, voltage is energy per unit charge, a positive charge of 1 C moving
from node @ to b gains 12 | of energy from the voltage source. If v ha- a value
of +5V, a positive charge of I C moving from b to ¢ loses 5] of energy: this
energy is removed from the circuit and dissipated in the resistance R 1 v, has
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a value of —7V, node d is at a higher voltage than ¢ and a positive charge
of 1 C-moving from ¢ to d gains 7] af energy. A current flowing from ¢ to d
could receive energy previously stored in the magnetic field of inductance L.

By Kirchhoff's voltage law, the algebraic sum of the voltages around a loop
at any instant is zere. As an abbreviation, we may write “Zv = 0.” As applied
to Fig, 2.4,

Zo=0=up + vy + U4 + Vyy (2-2)

where v, means “the voltage of b with respect to a”'; if vy, is positive, terminal
b is at a higher potential than terminal 4. In applying the law, the loop should
be traversed in one continuous direction, starting at one point and returning to
the same point. Starting from node a in this case,

Zo=0=vg—1vg—0, +0 (2-3)
A minus sign is affixed to the vp term because the plus sign on the diagram

indicates that node b is nominally at a higher potential than ¢ or Uy = —Up.

Example 2

In Fig. 24, if pg=+12V and By Kirchhoff’s voltage law,
vz = +3V, what is the value of v,?

Zv:():vs—l:lx~1),,+0
Zo=0=412 -5—¢, +0

vy= 412 5= 47V

The loop can be traversed in either direction, start-
ing at any point. Going counterclockwise, starting at
node c,

Figure 2.4  Voltage calculation. To=0=tvs—05+0+0,
which agrees with Eq. 2-3,

Application of Kirchhoff’s Lass

To illustrate the application of Kirchhoff's laws in solving electric circuits,
consider the cfrcuit shown in Fig, 2.5, In this case, the source voltages and the
resistances are given and the element currents and voltages are to be determined,

The first step is to label the unknown currents arbitrarily; as drawn, the arrow
to the right indicates the reference direction of #,. If the value of i, is calculated
and found to be positive, current i; actually flows to the right and an ammeter
inserted between node a and the 2-Q resistor with the + terminal at a would

4



Chapter 2 Circuit Principles

read upscale or positive. If the value of 4, is found to be negative, current i

actually flows to the left (the ammeter inserted as previously would read down-
scale or negative),

Applying Kirchhoff’s current law to node a,

S, = 0= i, — §
or .
=

From this we conciude that the R
current is the same at every point 3y
in a series eircuit, Since i, =1, it
is mot another unknown and will be
considered no further. Note that i,
is the current in the 20-V source
as well as in the 4-Q resistance.

The next step is to define the unknown element voltages in terms of the
arbitrarily assumed currents. In flowing from a to b, the positive charges consti-
tuting current i, lose energy in the 2-Q resistance; this loss in energy indicates
that the potential of a is higher than that of b, or v,, = Ri,, = +2i,. The
left-hand terminal of the 2-Q resistance is then marked with a neat + to indicate
the polarity of the element voltage in terms of the assumed current direction.
Following the same analysis, the upper end of the 8-8 resistance and the right-
hand end of the 4-Q resistance could be marked + in accordance with the
following element equations:

d
@Figure 25 Application of Kirchhoff's laws.

Ugp == + 26 or Oy, = — 24y
Upg = +8iy or Vg, = —Big (2-4)
g = + 4, or Vp = — 4i,

Additional relations are obtained in the form of connection equations. Applying
Kirchhoff’s current law to node b,

Si, = 0= 4i) + iy — iy (2-5)

Since we are summing the currents into node b, i, is shown with a minus sign.
Applying the current law to node d,

iy = 0= —i — iy 41,
Note that this equation is not independent; it contributes no new information.
Applying the voltage law to the left-hand loop abda, and considering each

element in turn,
So=0=u, + Oy + Ugy (2-6)
For the right-hand loop bedb,

o= 0= v + vy + By 27

@



Part 1 Circuits
Kirchhoff's voltage law applies to any closed path; for the outside loop abcda,
B0 =0=1py + g + 0z + Uy

But this equation is just the sum of Fas, 2-6 and 2-7 and no new information
is obtainedh Although this equation is not independent, it can be valuable in
checking. '

it is always possible to write as many independent equations as there are
unknowns, For a circuit with six unknowns (three voltages and three currents),
we have written six equations (three element and three connection equations).
Other equations could be written but they would contribute no new informatian.
If the currents are of primary interest, the unknown voltages may be eliminated
by substituting Egs. 2-4 into Egs. 2-6 and 2-7, which become

Bugpge = 0 = — 2, — 8iy + 32
Evpqy = D= +4ig ~ 20 + Biy

2V When these are rewritten glong with Eq. 2-3,
we have for Fig. 2.6

Lt - h= 0 (@8

d
Figure 26 Writing circult equations. +2i, + 8y =32 (2-9y

+ 46, + 8, =20 {2-10)
To evaluate the unknowns, these three equations are to be solved simultancously.
Some commonly employed methods are illustrated in the solution of this problem.

Solution by Determinants

The method of determinants is valuable because it is systematic and general;
it can be used to solve complicated problems or to prove general theorems. The
first step is to write the equations in the standard form of Egs. 28, 2-9, and
2-10 with the constant terms on the right and the corresponding current terms
aligned on the left.

A determinant is an array of numbers or symbols; the array of tha coefficients
of the current terms is a third-order determinant

1 1 -1
D=(2 0 8 (-11)
0 4 8
The value of a determinant of second order is
a
P = ad, — ah, @12)
b b
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The value of a determinant of third order is

¢ a4y o
b, b, b, iabe, Fabe, boaghiry — by - abicg — abe
¢ g 0y (3-13)

A sigrple ke for secvnd and third-order detersnounts is to take the products
“from upper leit to lower right” and subtract the products “from upper right g3
to lower lefl.” Detenmnants of higher order can be evaluated by the process
called “expansion by miuors, '} \
Repeating the first two columos for clarity and using the rule of Eg 2-13,
1 I -1 11 1
D=j2 0 8 2 0 =+(1X08) + (1)EX0) + (- 1}2(D
0 4 8o 4 —()BH) - (DEN8) - (—1)0)0
=0+0-8-32-186—-0= -58
Replacing the coefficients of iy with the constant terms on the right-hand side
of the equations in the standard form yields a new determinant:

11 0
Dy=12 0 32|=0+4+0+0-128—-40 -0 = --168 (2-14)
0 4 20

By Cramer’s rule fur the solution of equations by determinants,

D, - 168

i, = Or iy = - v = JA

=D R 5 7 !
Currents 4, and i, could be obtained in s similay maauer. N
Substitution Method o

When the munber of wiknewns is not large, the wethod of substitution is
sometimes more convenient than using delvrminanis. In this ethod, one of the
equations is solved for one of the unkno=ns and the result i substituted in the
other equations, thus eliwmating one wknown. Solving Eq. 28 for i, vields ®

i =y by

Substituting in Eqs. 2-9 and 2 10 vields

24 + 83 + i =
diy + 8(i, + ip) 7: 20
1see Britton and Snively: Colluge Algebra, Holt. Rinehart & Winston, New York. 1933, or auy
other college algebra text. An abbreviated discussion of determinants  _iven in the Appendix of
H. H. Skilling: Electrical Engineering Circuits, 2nd ed.. John Wiley & Sons. New York. 1965,
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which can be rewritten as

2 + 8, + 8, =32 2-15)
8iy + (8 + iy = 20 (2-16)
Solving Eq. 2-15 for i yields
.o 32— 8,
LT

Substituting in Eq. 2-16 yieids

32 — 8i , ) —56
8——w—2+12i2:20 or Q:ﬁ:*}xﬁ
and the voltage across the 4-8) resistance is 4

Uy = 4y = H—1) = —4V

The interpretation of the minus sign is that in reality node b is at a higher
potential than ¢, and positive current flows to the right in the 4-Q resistance,

Loop-Current Method

The reduction in the number of unknowns and in the number of simultaneous
equations achieved by substitution can be abtained automatically by an ingenious
approach to circuit analysis. A Ibop current I, is assumed to circulate around
loop abda in Fig. 2.7, and another
loop current I, is assumed to circu-

tion, the branch current i, is equal
to loop current I, and i, is equal
to L; but branch current i, is the
sum of loop cwrrents I; and I,

By applying Kirchhoff's voltage
law to the two loops we obtain
Z0g00 = 0= 2L ~ §{I, + 1) + 32

=0= 4, — 8, + L) + 20

which can be rewritten as

@ + 8, + 81, =32 217)

8L, + (8 + 4, = 20 (2-18)

These are similar to Eqs. 2-15 and 2-16, but the physical interpretation is
different. Equation 2-17 says: “The source voltage in loop 1 is equal to the sum
of two voltage drops. The first, (2 + 8)1,, is the product of loop current I, and
the sum of all the resistances in loop 1. The second, 81,, is the product of loop

late around loop cbdec. By inspec-*

o
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current I, and the sum of all resistances that are common to loops 1 and 2.7
The self-resistance of loop 1 is 2 + B = 10 Q; the mutual resistance between
the two Joops is 842, A similar statement could be made by using Eq. 2-18. To
obtain I, multiply Eq. 2-17 by 3 and Eq. 2-18 by (—2) and add the resulting
cquations, Then

301, + 24, = 96
— 161, — 241, = —40
141, = 56 or I,=4A=1

Checking

In solving complicated circuits there are many opportunities for mistakes and
a reliable check is essential. This is particularly true when the solution is obtained
in a mechanical way, using determinants. A new oquation such as that obtained
by writing Kirchhoff's voltage law around the outside loop of Fig. 2.7 provides
a good check. With a little experience you will be able to write (by inspection,
without first writing the element equations)

Zo =0 = —2i + 4i, — 20 + 32
Substituting i, = 4A and i, = —1 A,
Sv=0= 24+ 4-1)—20+32=0
and the values of i, and i, are checked.

Example

S ek 3R RSEnm e aeebees g pemteyy SeTY SR

P TR LIRE T ¢

Given the circnit of Fig, £8. caleulate” 1. Assume loop currents so that the desired current
the current in the 10-8 resistance using is I, by definition and I; = 1 A as given.
loop currents 2. Applying Kirchhofl’s voltage law to two loops,

Su=0=40 — AL, + 1) — 101,
To=0=40— 28 +1) — 9L — 40, + 1)

- In terms of self and mutual resistance,
+
0V _,_ E‘ 00, 4[:; I:} 1A (10 4+ 21, + 21, =40 (219
2

L4249+, +4 X1 =40 (220
From Eq. 2-20, I, = (36— 21,)/15.

Figure 2.8 l.nop-cﬁrrem analysis. L
Substituting into Eq. 2-19,
121, + (72 — 41,)715 = 40
or
;60072 _ 598 _
! 180 —4 ~ 176

N L I R PR

3A

.
s



Part 1 Circuits

Node-Voltage Method

The wise selection of loop currents can significantly reduce the number of
simultaneous equations to be solved in a given problem. In the preceding
example, the number of equations was reduced from three to two by using loop
currents. Would it be possible to get all the important information in 2 single
equation with a single unknown? In this particular case, the answer is “yes” if
we choose as the unknown the voltage of node b with respect to a property

@  chosen reference. In some practical devices many components are connected
to a metal “chassis,” which in turn
is “grounded’ to the earth. Such a
groynd, often shown as a common
lead at the bottom of a circuit dia-
gram, is a convenient reference. In
this problem the greatest simplifica-
tion will result if we chobse node
T d=0 d; now the voltage of any node is
. N understood to be with respect to
Figure 26 Node voltages. node 4, i.e., the voltage of node d
is zero. (See Fig, 2.9.)
Next, apply Kirchhoff's current law to each independent node. Here there is
only one independent node (since the voltages of nodes a and ¢ are fixed by
the voltage sources), so the sum of the currents into node b is

=0=i +i— 4 (221

The current § to sodé b from node a is equal to the difference in potential
thetween nodes a and b divided by the resistance between a and b, or

P
b= @22)

Similarly,
U, — 0y

= St and = s 223

where all voltages are in reference to node d. In this particular problem, v, i
given as +32V, and v, is given as +20 V.
@  Finally, bearing in mind Eq. 2-21 and the concepts represented by Eqgs. 2-22
and 2:23, we write one equation with a single unknown,
32-v, 20-v v,—0

3, =0= _ y
i, Tt 5 (2-24)

Multiplying through by 8,
128 — 4wy + 40 — 20y, — 0, =

10
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Therefore, the unknown voltage at independent node b is

168

= =24V
vy 7
By inspection of Fig. 2.9 we can write
. 24 : 32 — 24 . _20-—24
13=?:3A, iy :——2—-~=4A, and 12_,*T_ —1A

which agree with the results previously obtained. As illustrated in Example 4,
the node-voltage approach can be applied to more complicated circuits.

Example 4
e TR S B R e o IR o) B e B e I R BN R <
Civen the circuit of Fig, 2.10, caleulate 1. Chaose node ¢ {one end of the branch of interest)
the current in the 10-@ resistance wsing as the reference node.
node voltages. 2. ApplyKirchhoff's current law to independent nodes
2 and b.
2 Vg o0 up 8% 21.;()740~1\,,+v,,—uu70g—0
T 2 9 - 10
P v, ~ 0
ov (H)a Ty = 0= 1~ 2
Multiplying through by 90 and 36, respectively,
=0 1800 — 450, + 10v, — 103, — 9y, = 0
Figure 2.10 Node-voltage analysis. 40, —4v, + W - Oy =0
Collecting terms,
645, — 10n
4v, — 13¢,
3. Solving by determinants,
‘1800 -10
D,  1—-36 —13] _ —23,400 - 360
|64 —10] ~  —-832+40
4 —13

e =30V and by =v,/10 =3A

R o B

Formulation of Equations

Many books are devoted to electrical network analysis at intermediate and
advariced levels; these books give a thorough treatment of a variety of methods
for solving networks of great complexity and generality. Although many sig-
nificant problems can be solved by using the three approaches outlined in this

1
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Figure 2,11 A parallel CGL circuit drawn in two ways.

chapter, the discussion here is intended to be introduetory and illustrative rather
than comprehensive.

At this point you should be familiar with electrical quantities (their definitions,
units, and symbols), you should understand the distinction between real circuit
components and idealized circuit elements, you should know the voltage-current
characteristics of active and passive circuit elements, and you should be able
to apply Kirchhoff’s laws to obtain elreuit equations. ta engineering, the solution
of equations is usually less demanding than the formulation, and it is proper to
place primary emphasis on the formulation of equations.

1f voltages and currents are unchanging with time, as in the preceding example,
the behavior of a circiit is determined by resistance alone. A more general
problem is illustrated in Fig. 2.11, which resembles the tuning circuit found fn
every transistor radio. Following the procedure used previously, we write elemexgt
equations and then connection equations. Assuming a voltage v{t) with the
reference polarity indicated by the + sign, the corresponding current directions
are as shown. Assuming no initial current in the inductance (i, = 0 at ¢ = 0),
the element equations are- ’

d 1t
i(;=Cd';, io = Go, iL:Zf odt +0
0

Applying Kirchhoff’s current law to the upper node to obtain the connection
equation.
Si=0=ill) i — i — i
Substituting and rearranging,
do 1 o
C— + Go +—| vdt =i -
o+ Go+ LL cdt = i) (2-25)

1f the element values and i(#) are known, the solution of this integro-aifferential
equation consists in finding v(t). In the general case, this can be quite difficult
{see Chapter 6).

As another illustration, consider the dynamics problem of Fig. 2.12a. A mass
restrained by a spring slides on a friction surface under the action of an applied

. 12



