2z i R hi Bt FE

A R

(SR3ZhR)

Patrick M. Fitzpatrick .
(%) oy T = K P ”

Lt T b W ORR A

China Machine Press




n

-&.—%ﬁi

(F3ThR)

T

Jtiil%g.‘tfﬁ%%%@#‘i‘&




AR

Haaiaiid

RIS CR IR TR NI AR AR AN ARAR AN

[ERR AR RRES]

N ARERARREPS

Patrick M. Fitzpatrick: Advanced Calculus: A Course in Mathematical Analysis (ISBN .
0-534-92612-6).

Original edition copyright © 1996 by PWS Publishing Company, a division of International
Thomson Publishing Inc.

First published by PWS Publishing Company, an imprint of Thomson Learning, United
States of America,

All rights reserved.

Reprinted for the People’s Republic of China by Thomson Asia Pte Ltd and China
Machine Press under the authorization of Thomson Learning. No part of this book may be
reproduced in any form without the express written permission of Thomson Learning Asia and

China Machine Press.

AP HCHEAR hinE R HB A SR T LS A R, KR8 HRESE T
W, ARUEMERXEHEDEEBAE.
R, R T

ABRENEIDS. BFE. 01-2003-2021
BHER®E (CIP) &

BBy (M) /(%) ExmsER (Fizpatrick, P M. ) ¥ k5. HURT
Ak HiBG 4, 2003.5

(B RITRBE)
$ 4 . Advanced Calculus: A Course in Mathematical Analysis

ISBN: 7-111-11917-7
@ 0.3 I GBS -SSR - Bbf-X3 IV.0172
R R A B ECIPR R (2003) 38025828 5

PLBE T b tHARRE (et BSRICH BIF A f622 2 #BBc Ry 100037)
HEGE: B

e simAEENRIA PR A FEIR - FEPIEIR R TR &IT
2003 485 H 8RR Sk EN R

787mm x 1092mm 1/16 - 36.25 F]lak

EN%. 0001-2 000#%

EHr. 69.005¢

A¥gAES, mASE. RA. T, hAH RIS



THIS BOOK IS DEDICATED TO THE MEMORY OF MY FATHER,
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In order to put his system into mathematical form at all, Newton had to
devise the concept of differential quotients and propound the laws of motion in the
form of differential equations—perhaps the greatest advance in thought that a sin-

gle individual was ever privileged to make.

Albert Einstein
from an essay
On the one hundredth anniversary of Maxwell’s birth

James Clerk Maxwell: A Commemorative Volume



The goal of this book is to rigorously present the fundamental concepts of mathemati-
cal analysis in the clearest, simplest way, within the context of illuminating examples
and stimulating exercises. I hope that the student will assimilate a precise understand-
ing of the subject, together with an appreciation of its coherence and significance. The
full book is suitable for a year-long course; the first nine chapters are suitable for a one-
semester course on functions of a single variable.

Mathematical analysis has been seminal in the development of many branches of
science. Indeed, the importance of the applications of the computational algorithms
that are a part of the subject often leads to courses in which familiarity with imple-
menting these algorithms is emphasized at the expense of the ideas that underlie the
subject. While these techniques are very important, without a genuine understanding of
the concepts that are at the heart of these algorithms, it is possible to make only lim-
ited use of these computational possibilities.

I have tried to emphasize the unity of the subject. Mathematical analysis is not a
collection of isolated facts and techniques, but is, instead, a coherent body of knowl-
edge. Beyond the intrinsic importance of the actual subject, the study of mathematical
analysis instills habits of thought that are essential for a proper understanding of many
areas of pure and applied mathematics.

In addition to the absolutely essential topics, other important topics have been
arranged in such a way that selections can be made without disturbing the coherence
of the course. As three examples of such optional topics, I mention the approximation
methods for estimating integrals, the Weierstrass Approximation Theorem, and metric
spaces. Precise estimates for the errors incurred in the approximation of integrals were
always present in the classical courses in mathematical analysis. Nowadays, they do
not appear so frequently. In view of the recent growth in computational capability and
the attendant need to estimate errors in approximation methods, this topic seems to me
worthy of consideration for inclusion in a course. This material is presented in the last
section of Chapter 7; subsequent material is independent of this section. An approxi-
mation theorem of quite a different flavor is the Weierstrass Approximation Theorem.
This stands as one of the singular jewels of classical analysis. It can be presented as a
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companion to the discussion of approximation of functions .by Taylor polynomials;
this theorem is proven in the last section of Chapter 8, and again, the subsequent mate-
rial is independent of this section. The third topic, metric spaces, is more abstri.lct than
other topics in the book, but it is an abstraction that is wholly justiﬁt?d by its syn-
thetic power and the applicability of the general theory to important specific problems.
On the other hand, however, two of the most important examples of metric spaces,
Euclidean spaces and function spaces, are of sufficient independent interest that it can
be argued that they deserve a separate, seif-contained discussion. The choice I have
made is to begin the study of functions of several variables in Chapter 10 with the
study of Euclidean space R", and then, in Chapter 11, to study functions and mappings
between Euclidean spaces. Then I have included a separate chapter, Chapter 12, on
metric spaces. The student will have already seen important specific realizations of
the general theory, namely the concept of uniform convergence for sequences of func-
tions and the study of subsets of Euclidean space, and with these examples in mind
can better appreciate the general theory. The Contraction Mapping Principle is proved
and used to establish the fundamental existence result on the solvability of nonlinear
differential equations. This serves as a powerful example of the use of brief, general
theory to furnish concrete information about specific problems. Once more, none of
the subsequent material depends on Chapter 12.

At the beginning of this course it is necessary to establish a base on which the
subsequent proofs will be built. It has been my experience that in order to cover, with-
in the allotted time, a substantial amount of analysis, it is not possible to provide a
detailed construction of the real numbers starting with a serious treatment of set
theory. I have chosen to codify the properties of the real numbers as three groups of
axioms. In the Preliminaries, the arithmetic and order properties are codified in the
Field and Positivity Axioms; a detailed discussion of the consequences of these
axioms, which certainly are familiar to the student, is provided in Appendix A. The
least familiar of these axioms, the Completeness Axiom, is presented in the first sec-
tion of the first chapter, Section 1.1.

In Chapter 2, convergent sequences are studied. Monotonicity and linearity prop-
erties of convergent sequences are proven, and the Completeness Axiom is recast as the
Bolzano-Weierstrass Theorem and the Nested Interval Theorem for convergent
sequences. The material from this chapter is used repeatedly throughout the book. For
instance, in Chapter 3, continuity of functions and limits of functions are defined in
terms of sequential convergence. The linearity properties of convergent sequernces
from Chapter 2 immediately imply corresponding linearity properties for continuous
functions, limits, derivatives, and later, in Chapter 7, for integrals.

Chapter 4 is devoted to differentiation. In Section 4.5, Darboux’s Theorem is
proven: It asserts that in order for a real-valued function that is defined on an open
interval to be the derivative of another function, it is necessary that the given function
possess the intermediate value property. This is the first result regarding the solvabil-
ity of differential equations,

The students will be familiar with the properties of the logarithmic and trigono-
metric functions and their inverses, although, most probably, they will not have seen
a rigorous analysis of these functions. In Chapter 5, the natural logarithm, the sine,
and the cosine functions are introduced as the (unique) solutions of particular differ-
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ential equations; on the provisional assumption that these equatiops .have sol}ltions,
an analytic derivation of the properties of these functions and their inverses is pro-
vided. Later, after the differentiability properties of functions defined by integrals
and by power series have been established, it is proven that these differential equa-
tions do indeed have solutions, and so the provisional assumptions of Chapter 5 are
removed.

Integration is studied in Chapters 6 and 7. The integral is defined in terms of
Darboux sums, and later its property of being the limit of appropriate sequences of.
Riemann sums is established. The relationship between integration and differentiation
is described in two theorems, which I call the First and the Second Fundamental
Theorems of Calculus. This is done to emphasize the distinction between the formula
for evaluating the integral of a function that is known to be the derivative of another
function and the related, but different, matter of understanding the conditions under
which a given function is the derivative of some other function and providing integral
representations of solutions of differential equations. The study of the approximation
of functions by Taylor polynomials is the subject of Chapter 8. In Chapter 9, we con-
sider a sequence of functions that converges to a limit function and study the way in
which the limit function inherits properties possessed by the functions that are the
terms of the sequence; the distinction between pointwise and uniform convergence is
emphasized. This concludes the study of functions of a single variable.

The study of functions of several variables begins with Chapters 10 and 11,
which start with the study of the structure of Euclidean space R" and then turn to the
manner in which the results about sequences of numbers and functions of a single vari-
able extend to sequences of points in R, to functions defined on subsets of Euclidean
space and to mappings between such spaces. There is no class of subsets of R” that play
the same distinguished role with regard to functions of several variables as do intervals
with regard to functions of a single variable. For this reason, the general concepts of
open, closed, compact, and connected are introduced for subsets of R”. The notions of
compactness and connectedness for a subset of R" are motivated by the necessity to
extend the Intermediate Value Theorem and the Extreme Value Theorem to functions
of several variables. As already mentioned, Chapter 12 is an independent chapter on
metric spaces. The material related to differentiation of functions of several
variables is covered in Chapters 13 and 14. Emphasis is placed on precise assertions of
the way a function may be approximated, in a neighborhood of a point in its domain,
by a simpler function.

The study of mappings between Euclidean spaces is the topic of Chapters 15, 16,
and 17. Here, and at other points in the book, it is necessary to understand some linear
algebra. In Section 15.1, the correspondence between linear mappings from R” to R
and m X n matrices is established. As for the other topics that involve linear algebra,
in Appendix B the requisite topics in linear algebra are described, and using the cross
product of two vectors in R>, full proofs are provided for the case of vectors and linear
mappings in R>. In Chapter 15, differentiation is studied for mappings between
Euclidean spaces: at each point in the domain of a continuously differentiable mapping
there is defined the derivative matrix, together with the corresponding linear mapping
called the differential. Approximation by linear mappings is studied and the chapter
concludes with the Chain Rule for mappings. The Inverse Function Theorem and the
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