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- PREFACE

This book is a revision of the sixth edition, published in 1996. That edition has served,
just as the earlier ones did, as a textbook for a one-term introductory course in the
theory and application of functions of a complex variable. This edition preserves the
basic content and style of the earlier editions, the first two of which were written by
the late Ruel V. Churchill alone.

In this edition, the main changes appear in the first nine chapters, which make up
the core of a one-term course. The remaining three chapters are devoted to physical
applications, from which a selection can be made, and are intended mainly for self-
study or reference.

Among major improvements, there are thirty new figures; and many of the old
ones have been redrawn. Certain sections have been divided up in order to emphasize
specific topics, and a number of new sections have been devoted exclusively to exam-
ples. Sections that can be skipped or postponed without disruption are more clearly
identified in order to make more time for material that is absolutely essential in a first
course, or for selected applications later on. Throughout the book, exercise sets occur
more often than in earlier editions. As a result, the number of exercises in any given
set is generally smaller, thus making it more convenient for an instructor in assigning
homework.

As for other improvements in this edition, we mention that the introductory
material on mappings in Chap. 2 has been simplified and now includes mapping
properties of the exponential function. There has been some rearrangement of material
in Chap. 3 on elementary functions, in order to make the flow of topics more natural.
Specifically, the sections on logarithms now directly follow the one on the exponential
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function; and the sections on trigonometric and hyberbolic functions are now closer
to the ones on their inverses. Encouraged by comments from users of the book in the
past several years, we have brought some important material out of the exercises and
into the text. Examples of this are the treatment of isolated zeros of analytic functions
in Chap. 6 and the discussion of integration along indented paths in Chap. 7.

The first objective of the book is to develop those parts of the theory which
are prominent in applications of the subject. The second objective is to furnish an
introduction to applications of residues and conformal mapping. Special emphasis
is given to the use of conformal mapping in solving boundary value problems that
arise in studies of heat conduction, electrostatic potential, and fluid flow. Hence the
book may be considered as a companion volume to the authors’ “Fourier Series and
Boundary Value Problems” and Ruel V. Churchill’s “Operational Mathematics,” where
other classical methods for solving boundary value problems in partial differential
equations are developed. The latter book also contains further applications of residues
in connection with Laplace transforms.

This book has been used for many years in a three-hour course given each term at
The University of Michigan. The classes have consisted mainly of seniors and graduate
students majoring in mathematics, engineering, or one of the physical sciences. Before
taking the course, the students have completed at least a three-term calculus sequence,
a first course in ordinary differential equations, and sometimes a term of advanced
calculus. In order to accommodate as wide a range of readers as possible, there are
footnotes referring to texts that give proofs and discussions of the more delicate results
from calculus that are occasionally needed. Some of the material in the book need not
be covered in lectures and can be left for students to read on their own. If mapping
by elementary functions and applications of conformal mapping are desired earlier
in the course, one can skip to Chapters 8, 9, and 10 immediately after Chapter 3 on
elementary functions.

Most of the basic results are stated as theorems or corollaries, followed by
examples and exercises illustrating those results. A bibliography of other books,
many of which are more advanced, is provided in Appendix 1. A table of conformal
transformations useful in applications appears in Appendix 2.

In the preparation of this edition, continual interest and support has been provided
by a number of people, many of whom are family, colleagues, and students. They
include Jacqueline R. Brown, Ronald P. Morash, Margret H. Hoft, Sandra M. Weber,
Joyce A. Moss, as well as Robert E. Ross and Michelle D. Munn of the editorial staff
at McGraw-Hill Higher Education.

James Ward Brown
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CHAPTER

1

COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form (0, y)
correspond to points on the y axis and are called pure imaginary numbers. The y axis
is, then, referred to as the imaginary axis.
It is customary to denote a complex number (x, y) by z, so that

(1) ' z=(x,y).

The real numbers x and y are, moreover, known as the real and imaginary parts of z,
respectively; and we write

2) Rez=x, Imz=y.

Two complex numbers z; = (x, y;) and z, = (x;, y,) are equal whenever they have
the same real parts and the same imaginary parts. Thus the statement z; = z, means
that z; and z, correspond to the same point in the complex, or z, plane.
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The sum z, + z, and the product z,z, of two complex numbers z; = (x;, y;) and
Zy = (%, y,) are defined as follows:

(3) (xp, y1) + (x2, y2) = (x1 + %2, y1 + ¥),
4) (x1, YD (x2, ¥2) = (X1X3 — Y1¥2, Y1X2 + X1¥2)-

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers:

(-xl, O) + (-ny 0) = (xl +—x23 0)7
(x1, 0)(x2, 0) = (x9x3, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and itis easy
to see that (0, )(y, 0) = (0, y). Hence

z=(x,0)+ (O, D(y,0);

and, if we think of a real number as either x or (x, 0) and let i denote the imaginary
number (0, 1) (see Fig. 1), it is clear that*

&) z=x+Iiy.
Also, with the convention z° = zz, z° = zz2, etc., we find that

i2=(0, (0, 1) = (=1, 0),

or
(6) i?=-1
y
oz=(x,y)
¢i=(0,1)
Ol x=(x,0) *  FIGURE 1
In view of expression (5), definitions (3) and (4) become
) Cp iy + (p +iyy) = (xp + xp) +i(yy + y2),
(8 (X1 +iyD e + iyy) = (x1x5 — y132) + i(yixy + x1y2).

*In electrical engineering, the letter j is used instead of ;.
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Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i? by —1 when it occurs.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises.

The commutative laws

(1) 21+ 2y=2p1+21, 2Z1Z2=223
and the associative laws
(2) @1+t z=0+ @+ z3), (112973 = 21(2323)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws. For example, if z; = (xy, y1)
and z, = (x5, y,), then

Zit =+ x, 1+ y2) =+ x5 Y2 +y) =22+ 21
Verification of the rest of the above laws, as well as the distributive law

3 z(zy + 29) = 221 + 229,
is similar, :

According to the commutative law for multiplication, iy = yi. Hence one can
write z = x + yi instead of z = x + iy. Also, because of the associative laws, a sum
71+ 22 + z3 or a product ;2,25 is well defined without parentheses, as is the case with
real numbers.

The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for real
numbers carry over to the entire complex number system. That is,

4 z+0=z and z-1=z

for every complex number z. Furthermore, 0 and 1 are the only complex numbers with
such properties (see Exercise 9).
There is associated with each complex number z = (x, y) an additive inverse

(5) —z=(—x, —y),

satisfying the equation z 4- (—z) = 0. Moreover, there is only one additive inverse
for any given z, since the equation (x, y) + (4, v) = (0, 0) implies that u = —x and
v = —y. Expression (§) can also be written —z = —x — iy without ambiguity since
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(Exercise 8) —(iy) = (—i)y = »i (—y). Additive inverses are used to define subtraction:
(6) 2=+

So if z; = (x, y1) and z, = (x5, y;), then

M 21— 22 = (X — X2, Yy — Y2) = (X1 — x2) + i(y) — »)-

For any nonzero complex number z = (x, y), there is a number z~! such that
zz~! = 1. This multiplicative inverse is less obvious than the additive one. To find it,
we seek real numbers u and v, expressed in terms of x and y, such that

(x’ )’)(u, v) = (1’ 0.

According to equation (4), Sec. 1, which defines the product of two complex numbers,
1 and v must satisfy the pair

xu—yv=1, yu+zxv=0
of linear simultaneous equations; and simple computation yields the unique solution

x R 4

= ——, V= 74—,
x2+y2 x2+y2

So the multiplicative inverse of z = (x, y) is

®) 7= (xziyz’ leyyz) (z #0).

The inverse z ™! is not defined when z = 0. In fact, z = 0 means that xZ + y2 =0; and
this is not permitted in expression (8).

EXERCISES
1. Verify that
@ W2—i)~i(l—V2i)=—=2;  (b) @2, -3)(=2,1) = (-1, 8);
1 1
3; 1 s Ty T )= s 1)
(© (3,13, —1) (5 10) 2,1

2. Show that
" (@Re(iz)=-Imz; () Im(iz) =Rez.

3. Show that (1+ z)% = 1+ 2z + z%

4. Verify that each of the two numbers z = 1+ i satisfies the equation z2 — 2z + 2 =0.
5. Prove that multiplication is commutative, as stated in the second of equations (1), Sec. 2.
6. Verify

{(a) the associative law for addition, stated in the first of equations (2), Sec. 2
(b) the distributive law (3), Sec. 2.
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7. Use the associative law for addition and the distributive law to show that

z(z1+ 20 + 73) = 221 + 225 + 223.

N\

8. By writing i = (0, 1) and y = (y, 0), show that —(iy) = (—i)y =i(—y).
9. (a) Write (x, y) + (u, v) = (x, y) and point out how it follows that the complex number
0 = (0, 0) is unique as an additive identity.
(b) Likewise, write (x, y)(u, v) = (x, y) and show that the number 1 = (1, 0) is a unique
multiplicative identity.

10. Solve the equation z> + z + 1= 0 for z = (x, y) by writing
x, (x, ¥)+(x, )+ (1,0 =(0,0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show
that y # 0. ‘

Ans, 7= <—1, :l:£>
2 2

3. FURTHER PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described in
Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disruption. '
We begin with the observation that the existence of multiplicative inverses enables
us to show that if a product z,z, is zero, then so is at least one of the factors z| and
Z;. For suppose that 7,z = 0 and z; # 0. The inverse zfl exists; and, according to the
definition of multiplication, any complex number times zero is zero. Heuce

—1 -1 -1
z,=1-z,=(27 )z, =2] (z)2,) =2z, -0=0.

That is, if z;z, = 0, either z; =0 or z, = 0; or possibly both z; and z, equal zero.
Another way to state this result is that if two complex numbers z, and z, are nonzero,
then so is their product 7,2,.

Division by a nonzero complex number is defined as follows:

(1) | Hozis' (2 £0).
22

If z; = (x, y1) and 2 = (x5, ¥»), equation (1) here and expression (8) in Sec. 2 tell us
that

1 _ (x1, Y1) X =Y2 Y _ [xix2+Y1y2 YiXo— X0
=YV S T35 2.2 2.2 )
22 X+ ¥ X5+ xy + 5 x5+ y;
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That is,

xXxp +  YiXp— X
@) 2L _Mi% )’1)’2_HY1§ 12 (2, 2 0).

2 X3+ 3 x3+y?

Although expression (2) is not easy to remember, it can be obtained by writing (see
Exercise 7)

3) Z _ Dt iydxg —iy))
7z (n+in) —iy)’

multiplying out the products in the numerator and denominator on the right, and then
using the property

1+ 27

_ - - Z Z
(4) =(z1+z2)z31=z1z31+z2z31=z—1+—2 (z3 #0).
3

23 23

The motivation for starting with equation (3) appears in Sec. 5.
There are some expected identities, involving quotients, that follow from the
relation

) 1_5' @0,
22

which is equation (1) when z; = 1. Relation (5) enables us, for example, to write
equation (1) in the form

6) a. z,(l) (2o £0).

22 rés)

Also, by observing that (see Exercise 3)
@' ) = (@ Nz D=1 (@ #0,2,#£0),

and hence that (z,z,)"! = zl’lzz— ! one can use relation (5) to show that

1 1 1
(7 — =) = = (—) (——) 21 #£0, 7, #0).
- 122 1 2, a\5 (21#0,2; #0)
Another useful identity, to be derived in the exercises, is
AV b4 z
®) £z - (—‘) (—2) (23 #0,24 #0).
2324 23 24



