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PREFACE

The purpose of this book is to treat matrix al~ebra
.and calculus in an elementary and self-taught manner, with
a view to quickly applyingt them in the numerical solution
«of engineering problems. Set theory along with the termi-
nology of modern linear alg(_ebr'a is not assumed. The
prerequisites for this text are simply calculus th‘rough dif-
ferential equations, computer programmiﬁg in Fortran or
Basic, and a degree of maturity in the basic engineering
sciencés, .

The book contains enough-materials for a semester
course at the undergraduate senior or beginning graduate
level. For a shorter coufse some topics may be left out
at the discretion of the instructor. Whenever appropriate, .
an effert has been made to provide problems with a prac-
“tical flavor to motivate the student. Answers: to problems
are provided, except those requiring analytical proofs.

A number of computer prograrhs in Fortran and Basic
are provided in the appendices. These have been devel-
oped and tried out by students at California” State Polyte-
<hnic University, Pomona. The use of these programs re-
sults in the many illustrative examples throughout the
text. The authors have drawn materials from different
fields of engineering, so the book is intended to be inter-

disciplinary. For students already with some background



in linear élgebra, the first three chapters may be omitted.
They are includéd for those who need an introduction to-
the subject or a quick review,

Chapters One through Three deal with determinants

and elementary matrix operations. Chapters Four through
Six cover the eigenvalue problem, its applications, and nu-
merical solutions. General matrix functions are described’
in Chapter Seven. Chapters Eight and Nine concentrate
on differential equations, while applications of systems of
simultaneous equations are deferred to Chapter Ten, which
may of course be taken up right after Chapter Three if
desired. Chapter Eleven deals with vector spaces and li--
near transformations, as preparation to the study of linear
systems. Chapter Twelve concludes with an introduction
to Linear Programming and its diverse applications.
’ The expected outcome of a course using this text is:
the ability to readily solve numerically*eigenvalue problems,.
problems involving systems of simultaneous -equations and
ordinary differential equations, and optimization of linear
functions subject to linear constraints. Computational speed
and error analysis are not treated in this elementary text.
For this the appropriate literature should be consulted.

The authors hope that the publication of this text will .
help in a small way the academic exchange between the

People’s Republic of China and the United States.
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CHAPTER 1

Basic Definitions and Operations

~ Matrices

1.1 Notations and Definitions

A matrix A is a rectangular array of elements denoted
by

Ay @y *ceree dy,
A dy Az vt dyn
@1 @mz = * """ [

The element, a;;, is located in the /** row and f** column.
If m = 2,A becomes a square matrix of order n; otherwise
in general it is of order (m, n) or “m by »”°. Some paru-
cular types of matrices and special terms are defined as
follows:

(i) Matrix equality: Matrix A is equal to matrix B
if and only if they are of the same order (m,n) and each
element in A is equal to the corresponding element in B,
or, a;; = by,

(ii) Column matrix (m,1) has m rows and one column.

1
e.g. A(3,1) = A 3
0

(1ii) Row matrix (l,n) has one row and = columns.

v 1 .



eg. A(1,3) =1[14+/3 0]
(Gv) Real matrix (myn) has only real elements.
S e =ay,.
(v) Transposition: when a matrix is transposed the
rows and columns are interchanged.

e.g.A=[1 2] transposed A'=[1 3]
-3 4 2 4

It is seen ‘that in A above, the first column becomes the

first row, and the second column the second row in A’.
In fact the mechanics of transposing a square matrix 1s to
“hold the “diagonal” elements in place (like 1 and 4 above)
and then “reflect” the “off-diagonal” elements (like 2 and
3) across the diagonal. Mathematicallv, such operation is
denoted by: (4;;)" =wa;. This means that the element
(a;) in A’ is the element a;; in A,

(vi) Non-square matrices can also be transposed. For
example, a row matrix when transposed becomes a column
matrix, and vice versa. :

(vii) Symmetric matrix is one that is equal to its own
transpose.

A=A or-a;; =da;

i

(viii) Skew-symmetric matrix is one that has a;; =
—a;;. In other words, the off-diagonal elements are the
negative of their images across the diagonal.

e.g. A—-—-[ 01 1] transposed A'=[(1)—l}=—A
—1 0. 0

~ (Since we have not yet defined matrix arithmetic operations
at this point, we assume that if every element a;; in A has
its sign changed, then the new matrix is represented as

—A)

o 2




(ix) Complex conjugate of a matrix A is a matrix
derived from A by taking the complex conjugate of all the
elements in A,

24+i 3 2—4 3
S AT P
i 1 — —4i 14+

(x) Hermitian. matrix is one which is equal to the
transpose of its own complex conjugate.

A [ 4 3+i] A [ 4 3-i]
<& 3—i 2 343 2
4 34

] -a
3 —g 2

_ (A*) — [
(xi) Skew-Hermitian matrix is one which is equal to
the negative of the transpose of its complex con)ugate, or

A= —(A%y,

cg A— [ 0 —2—i can be easily shown to
e 2—5 0 be Skew-Hermitian.

(xii) Zero or null matrix has “all its elements zero and
is denoted by 0, or, a,;, =0 for all s and j,

(xiii) Diagonal matrix is a square matrix whose off-
diagonal elements are zeros.

(ix) Identity or unit matrix Jis a square matrix with
all diagonal elements equal to one and all off-diagonal ele-
ments zero;

T a,-,-===8,—,-==l 1f‘=’
== if fe]
1.2 Matrix Addition



Matrix A can be added to matrix B if both matrices
are of the same order. The result is a matrix € whose
elements ¢;; is the sum of the corresponding elements a;;

and b,‘j,
1 2
coasll 2 a2 0]
- 3 4 0o —3

nem-en[! ]

It is clear, by definition, that matrix addition is associative,.
ie, A+ (B+C)=(A+ B)+C,
1.3 Matrix Mutiplication by a Scalar

When matrix A is multiplied by a scalar %, the result
is written as kA whose elements are ka;;.

1 2 2 4
eg. k=2, A=[3 4}, kA=16 8
0 1 [0 2
0 17 ro —1
-1, Aa[ ], A= ]
% —1 2 k L1 —2

1.4 Matrix Subtraction

Matrix subtraction, like addition, is defined only for
matrices of the same order. Making use of the concept
of scalar muluplication, matrix subtraction can be defined
as;

CEA'—'B=A+(‘°—1)B or C,‘,‘=ﬂ[,'_'b,‘j

[ 2 —6 ] [ 11 J [ 1. — 7]

e.g. — =

L1 3 —1 0 2 3

Again, the associative law applies; A — (B— C) = (A —
B) + C.



PROBLEMS

3 —2

a-]° 2 B-| 77
L2 3 — 2 0
C=—i 0] D‘=- 0 2+£]
Lo — L2—1 0
r1 1+ ¢ o ~—=1—i
E=L1—-i —1] F=_1——i 0 ]

(1) Find A — 2B,

(2) Fnd C+D+ E,

(3) Find E + iF,

(4) Find (1/3)(A + B), Identify the resulting matrix.
(5) Which of the above matrices are real and symmetric.
(6) Identify anyg Hermitian or Skew-Hermitian matrices.
(7) Find E + E’, 15 this skew-symmetric?

(8) Find F 4+ F*, s this skew-symmetric?

(9) Find € + (C*)’, Identify the resuling matrix.

v
.



CHAPTER 2

Determinants——Definitions and Properties

2.1 Determinants

Each square matrix of order » has associated with it
a scalar quantity D called the determinant of the matrix.
Ler us start with defining the determinant of matrices of
order 2 and 3.

[ 4y ' - |8u 4z .
Let A = ’ then D == == Anén T dpdn

Ay Axn ay an -

[ay an ax 4y 4y ap

Let A= dy an 42l then D == Gn Ay 4n

dy dyn dxn ; a4y dyn G
== dudndy + “15“23031
+ dnands — apdnpay
" Andpds T Andnds
Note that i each of the above cases,
(3) there are n! terms. -
(b) each term is a product of » distinct elements.
(c) there are equal number of “plus® and “minus® terms.
It is of course expected that these are the features to
be found in the evaluation of any determinant of order =,
A formal definition is as follows:
D=Ei(a,;a,iagk~-----) (2

where




(i) the number of terms in the summation is n!.

(i1) the row suffices appear in normal order.

(iil). the column suifices appear in some permutation
of normal order, and

(iv) the posirive sign is taken if normal order can be
derived by an even number of interchanges of adjacent
suffices; otherwise the negative sign.

€.B. dppdysdsy —> dpdydyy " Infadn
(7 N

Two interchanges are required. .. positive.

€.8. aud;dy =~ dpdypdy
"t

One interchange is required. ." negative.
2.2 Evaluation of Determinants

To evaluate z determinant [» directly according to
equation (2.1) can be difficult if the matrix is of order
larger than three. 7To facilitate calculation, we will turn
to a “systematic® procedure which is derived from the
formal definition.‘7 First let us introduce two terms, the
Minor (M,;) and Cofactor (C;;) of a determinant D,

2.3 Minor (M.’j)

The minor M;; of the element «;; of the determinant

D of order n# is a new determivant of order » — 1 obtain-

ed from D by deleting the #' row and i column from
D )

1 2
Example 2.1, D=|4 5
7 8

Mu'=“l4 > > Mn =
7 8 '



2.4 Cofactor (C;;)

The cofactor C;; of the element a,; of D is given by:

Ci;’ = (‘DHI’MU (2~2)
c.g. Cn = (—I)H-ZM[; = —Mu
Cy= (__1)3+1‘M“ = M3y

2.5 Evaluation of high-order Determinants

With the above definitions of minor and cofactor, the

formal equation (2.1) for D of any order » can be shown
to reduce to:

e.g.

2.6

»

R .
D= E 2;;C;; any row ¢
i=1 :
; (23)
= 2 @;;C;; any column j
i=1
an 4 4y
= lan @z ax|; choosing row 7 ==2,

dn 4y dx

3
D= Zaz,‘czj = anCy + anCn + a3C;

J=1 )
= ay(—1)"'My + an(— 1M, + an(—1) M,
= —ayMn+ auMn— anMx

@y 4ag 4y an

812 T dn

a3 d ay da 43 -dyn
= —aylayuen — apay) + an(eyas — apdy )
e aza(ﬂuaaz — dnay)
= results shown on the beginning page of this chapter.
Fundamental Properties of Determinants

B o



