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1. PERIODIC SOLUTION AND ALMOST
PERIODIC SOLUTION OF DIFFERENTIAL
EQUATION IN CRITICAL CASE’

Abstract

In this paper, we investigate the existence of periodic solution and
almost periodic solution of the differential equation system:
' =A()x+g(t,x)

in critical case.

§ 1 Introduction

Let us consider systems:

'=A(t)x (1)
and

r’=A(t)z+g(t,x) (2)
where zE R", A(t) is n X n almost periodic matrix on R = ( ~ o,
+ ), g(2,2): R X R">R" is uniformly almost periodic function in
t with respect to x on any compact sets of R". It is well known that
when system (1) admits exponential dichotomy and g (t,x) satisfies:

lg(t,z)—g(t,y)|<Llx-y] (%)
with ., y€ R" and L enough small, then almost periodic system (2)

* X 1987 £ R B F{Ann. of Diff. Eqs.)(35 3 8% 4 33
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has unique almost periodic solution [1],[2]. In this paper condition
( * ) is replaced by ‘lfm lg(t,x)!/| x| =0 uniformly with respect to
t € R, we extend Favard theorem to system (2). We also discuss the
existence of almost fperiodic solution of system (2) when g(t,x)

satisfies:

lim inf (1/n) | l exp(— a(t — s5)) , Sup | g(s,u)tds+

- ul<n

Jmam(— a(s —t)) , Sup | g(s,u) ldst =0

| u =n
uniformly in t and system (1) admits exponential dichotomy. Our

tools used here are fixed point theorems.
§ 2 Definitions and Notations

For convenience, we initially give some definitions and notations
as follow: ,

Definition1 F (z,x): RX R">R", which is continuous in ¢,
and z is said to be uniformly almost periodic in ¢ with respect to x on
R (for short u. a. p) if, for any € >0, and compact subset D of R",
it is possible to find a real number 1(e, D) such that for any interval
with length 1 (¢,D), there exists a number in this interval such that;

|F(t+7,2)~F(¢t,z)|<e for tER, 2€D.
We use E(¢,F) to denote the set:
{zlt€R,|F(t+ r,2) - F(t,z)|<e for t€R, z€D}.

Definition 2 Let f (¢, z) be uniformly almost periodic in ¢
‘with respect to x, then the module of f (¢, z), mod (f), is the
smallest addive group of real number that contains the exponents of f
(t,x).

Definition 8  System (1) is said to admit an exponential




dichotomy if there exist a projection P, positive constant K, a and
fundamental solution matrix X (¢) satisfing:
I X()PX '(s)I<Kexp (- a(z~5)), t=5,
FX()(I-P)X Ys)I<Kexp (—a(s—1t)), s==t. (3)

§ 3 Main Results and Proofs

In order to prove our result, we first prove the following lemmas:

Lemmal Let f(¢), g(z) bea. p, then (I), (II) and (M)
are equivalence:

(I) Taf converges uniformly on R, so does Tag.

() E(e,f)CE(e,g).

() mod (g)CTmod (f).

The proof may be found in [3].

Lemma2 Let f(t,x) beu.a.p, g(z) and ¢(z) be a.p. If
mod () Cmod (g) and mod (¢)Cmod(g) then mod (F(t,¢(t))
Cmod(g(2)).

Proof Since mod (f)Cmod (g) and mod (¢)Cmod (g), if
Tag converges uniformly on R then Taf and Tag converge uniformly
on R by Lemma 1. Since f (¢,x) is u.a.p. again, Taf (2, ¢(1))
converges uniformly on R, therefore mod ( f(z,¢(2)) Cmod (g).
This proves lemma.

Lemma3 Let {f,(¢)} be an almost periodic sequence such that
it converges locally uniformly on R. If mod (f,)Cmod (f), n=1,
2,*, where f () is a.p then {f,(2)} converges uniformly on R.

Proof Since f(¢) is a.p, for € >0, there exists real number 1
(e) >0 which is inclusion length. Because {f,(¢)} converges locally
uniformly on R, there exists N (¢) >0, when 2> N (&) we have:

[£(2) = fusp(8)I<e  t€[0,1(e)].




If t&[0,1(e)], thereexists t€ E{e, fI CE(f,,e) such
that ¢t +t€[0,1(e)] by lemma 1 and conditions of lemma 3. Hence.
[£a(2) = fus p (DI £ () = £t + )| +
| fasp(2+7) - fu(e+ 2)[<3e,

therefore we show that {f,(¢)!| converges uniformly on R.

Lemma 4 Let C be a normed space, B the closed convex subset
with boundary B of C. If T is a continuous compact mapping of C
into C such that T (?B)CB, then T has a fixed point.

This lemma can be found in [4].

Lemma S Let us consider the system:

2’ =A(t)x+ f(e). (4)

where A (¢) and f (¢) are a.p. If system (1) admits Favard

condition and bounded solution, then system (4) has unigue minmal
solution which is a.p with mod (x(¢))Cmod (A(z), f(2)).

Proof Refer to [5].

Lemma 6 Suppose system (1) admits an exponential dichotomy
(3), then almost periodic system (4) has unique almost periodic
solution x (¢) with mod (x(2))Cmod (A(2), f(2)).

Proof Refer to [1],[2].

Using Lemma 1~ 6, we can prove our theorem.

Theorem 1  Consider the differential system (2), where A(?) is
a.p, g(¢,x) is u.a.p such that.

Illiglmlg(t,zﬂ/lxl =0 uniformly in t € R.
Assume that system (1) satisfies Favard condition and has no
nontrivial alomost periodic solution x (¢) with mod (x(¢))Cmod (A
(¢),g (t,x)). Hforany u(¢)E€C={u(s)| u(t) is a.p and mod
(W)Cmod (A(¢), g(z,x))! the system
z'=A(t)x+g(t,u(z)) (5)
—_—g —




has bounded solution, then system (2) has almost periodic solution x
(z) with mod (x(2))Cmod (A(t),g (t,x)).

Proof We prove our theorem by the following steps:

Step 1 We difine a Banach space and an operator. Let C be a set
C=lu(t)lu(t)isa.p withmod( u(2))Cmod (A(t), g(t,x))}
with norm || u(2) || = ?2?‘ u(t)|. It is obvious that C is a Banach

space. For any u (t) €& C, then system (5) has unique almost periodic
solution z,(¢) with mod (x,(2))Cmod (A(t), g(t,u(t))Tmod
(A(t), g(z,z)) by lemma 5 and conditions of theorem. Hence we
can define operator T':

T:C—~C.

u(e)=>z,(t)=Tu(r).

Step 2 We show T is a compact operator. It is sufficient to
show that for any sequence { u,(¢)} of C such that || u,(z) || <M,
n=1,2,, there exists a subsequence | Tu, (2)i= l.z,,"‘ (¢)t which
converges in Banach space C.

Frist we show {z,(t) = Tu, ()} has bounded. Suppose that
{z,(2)} has no bounded, we may assume:

Iz, i =§gg|x,,(t)|—*°° asn—>0,
From (2) we have

(g/ N2, 1Y = A2/ N2, | + g2, ())/ N zu Il (7)
LetZ,(¢)=z,/ll z, Il , then {Z’,(¢)} has bounded, hence {Z,
(t)} is equicontinuous and uniformly bounded. Applying Ascoli
theorem, we obtain that { Z,(¢)} converges locally uniformly on R.
Since mod (Z, (2))Cmod (A(¢),g (¢,x)), by Lemma 3, {Z,(z)}
converges uniformly on R, therefore {Z, (¢)} converges to Z (t)
which is a. p with mod (Z(¢))Cmod (A(¢), g (¢,z)) because of
almost periodicity of {Z,(¢)!. Let n—>o in (7), we obtain:

J— 5 —




Z(t)=A()Z(2).
Hence system (1) has an almost periodic solution Z(#) with mod (Z
(t))Cmod (A(¢), g(t,x)), which is contradictory to assumption
of theorem. Therefore {z,(¢)= Tu,(t)} is uniformly bounded.

. Since {x,(t)} satisfies:

2 (t)=A()x,(2)+g(t,u,(t)),
{z,  (2)! is uniformly bounded. Using Ascoli theorem again, we
obtain that {x, ()} converges locally uniformly on R. Because mod
(x,(t))Cmod (A(t), g (t,x)), by applyting Lemma 3, we show
that {x,(¢)} converges uniformly on R. So T is a compact operator.

Step 3 We show that T is continuous.

Letu (¢) € C, for any {u, (¢t)} CC such that }u, (¢)}
converges to #(z) in C. We show that Tu,(t) converges to Tu(t)
asn — . Since {u, (t) }converges to u () in C. {u, ()} is
bounded. By the same methods as above we show that Tu, (t)
converges to Z(t) uniformly on R which is an almost periodic solution
of the system:

'=A(t)x+g(t,u(t)).
Since system (1) has no nontrivial almost periodic solution, Z(z) =
Tu (2). thatis, Tu,(2)—Tu(¢) in C as n—.so far, we have
shown that T is a compact continuous operator.

Step4 We show that there exists R such that TdB C B, where
B={u()lu(t)€EC Il u(z) | <R}. We prove

Jim 1 Tul /0l =0

holds. Suppose this doesn’t hold, then there exist a number C >0, a

sequence {u,} in C such that || u, l| =%, asn—=o0, || Tu, || 2C-
Null. Let Z2,= Tu, /| Tu, Il , we have:
Z ()=A()Z,(t)+g(t,u(£))/ || Tu, |l . (8)
— 6 —



Since kxglg(t,u,,(t))’/” Tu, ||l =
lLr2(|g(t,u"(t))l/| u, (D)D) X o, ()N T, )=
0.
uniformly for t € R, let n—>% in (8), by the same method as above
we can show that { Z, (¢ )} uniformly converges to Z(z) with is almost
periodic solution of system (1), which is contradictory to our

assumption. Therefore “ linn*x Il Tu | 7l w | =0 holds. Let R so

large that: || Tu | /|l « || <1, ifll ull =R and Bg={u(z)|u(t)
€C, Il ul <R!, then TABRC By By Lemma 4, T has fixed point
u(t), a.e, Tu(t)=u(r). Hence u () is an almost periodic
solution of system (2). This completes the proof of Theorem 1.

From theorem 1 and lemma 6, we immediately obtain the
following theorem 2.

Theorem2 If A(¢)isa.p, g(t,z) is u.a.p. Suppose (1)
admits exponential dichotomy and ‘ ’ljr‘n‘,° lg(t,z) |/l | =0 uniformly
in ¢ then system (2) has almost periodic solution x(¢) with mod (x
(¢))Cmod (A(2), g(t,z)).

The method used to prove Theorem 1 also can be applied to
periodic system (2). We have:

Theorem 3 If A(¢) and g (¢, z) is periodic in ¢ with period
T, if periodic system (1) has no nontrival periodic solution with
period T and ,gr_p”lg(t,x) |/l 2| =0 uniformly in ¢, then periodic
system(2) has T - periodic solution.

Now we discuss the existence of almost periodic solution of other
type. We have the following result:

Theoremd4 If A(:) isa.p, g (¢,z) u.a.p and system (1)
admits an exponential dichotomy. Suppose g(z,z) satisfies:




