xEitangsEsrEzenzs (BEDRR)

OPERATING
SYSTEMS
PRINCIPLES

Lubomir F. Bic =
Alan C. Shaw

——

=

BIEXF HiMtt



XFEWHENBEEIFLBM AR (REAK)

Operating Systems Principles

RIERGIREE

Lubomir F. Bic
University of California, Irvine
Alan C. Shaw

University of Washington, Seattle

HEXFHIER
t ®



English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: Operating Systems Principles by Lubomir F. Bic, Alan C. Shaw, Copyright © 2003
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc. publishing as Prentice Hall, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A5 FEIR 1 Pearson Education (GIAEMHE HRER) #BRAEEXZREHBRET.

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

RFPEARENMEERN (FEEPEEE. BIIHMTHEXOF
EETHX) HELIT.

IERTHBUSE RS AEEE BT 01-2003-7898

A EHEREE Pearson Education (B4 B HARE ) BAFIRE, TREETSHE.

BBERRE (CIP) HiE

BYERARH = Operating Systems Principles / EE& (Bic, L.F.), ¥ (Shaw, A.C.) ¥. —RHZX,
—IbA: EERFEDGRAL, 2004

(REFEHHFESIEREM R
ISBN 7-302-07724-X

. % 1. Ol Of- 1. BERE-—REERE-#HM—-EL . TP3I6
h ERA B 457E CIP $UBZF (2003) 28 111620 5

WA F: BERRKFHRERE o bt dEREERFEEWRE
http://www.tup.com.cn B 4W: 100084
#EH: (010) 62770175 EARE: (010) 6277 6969

wTiRE: R4E

Bl B &: WEHEREERIT

=M R HE R AR

B BB R RATHT

185X230 EPk: 35.25

2004 FE 1 HE YR 2004 E 1 HEE 1 IKEIR

ISBN 7-302-07724-X/TP + 5652

1~5000

50.00 J&

BTk OH W
SBE T ;e

A VWAL LFAR. WEDLIRGRT, B0, RAFERARIAE, H5HLRF B HREKR
B, BERBIE: (010) 62770175-3103 2 (010) 62795704,



i i B

HA 21 e, HFAZFENLF. BRUREEENKEFHENE. BFNPOE
BREMAT ST EREXBRERNAL, EREEZFPRENRSY. REHE, FA
ERRERAANEY, CRARIEEEN. BRERSHENEMEFRRE, N Tk
BHNEFAE, HEMEAXNRERERGERA BN .

HHERFHRAN 1996 FEFF46, HESFLHRAREE, BEMRT “REHEN
HEAS (RERBO” F—RFI5IHEH, 2 TEHAEENAMZ . BA 21 g, ®
{IAEHRESFEE M BRSO E, ECARERME, #— P REBAE, 5%
BHBAERYT, —mEAEMETXERREERH TRESRAR EHAETENEEHES
ZRHMRE LRI, HRAE “KREHENBE RIEBHMRT GO, UAEE.
HFUINBYEE R ER AR TIEMHBR IR LR AR EFEEAER. K
W BA R A S E ML FEHM, URBRIE R RN BRI ELBEM R (B
EVO” BT, EEAREIMENTE.

EE R R
2002 F 10 A



Preface

Operating systems bridge the gap between the hardware of a computer system and the
user. Consequently, they are strongly influenced by hardware technology and architecture,
both of which have advanced at a breathtaking pace since the first compu'ters emerged
in the 1940s. Many changes have been quantitative: the speed of processors, memories,
and devices has been increasing continuously, whereas their size, cost, and power con-
sumption have been decreasing. But many qualitative changes also have occurred. For
example, personal computers with sophisticated input, output, and storage devices are
now omnipresent; most also are connected to local area networks or the Internet. These
advances have dramatically reshaped the world within which operating systems must
exist and cooperate. Instead of managing a single processor controlling a collection of
local memories and I/O devices, contemporary operating systems are required to manage
highly parallel, distributed, and increasingly more heterogeneous configurations.

This book is an introduction to operating systems, appropriate for computer science
or computer engineering majors at the junior or senior level. One objective is to respond
to a major paradigm shift from single-processor to distributed and parallel computer
systems, especially in a world where it is no longer possible to draw a clear line between
operating systems for centralized environments and those for distributed ones. Although
most of the book is devoted to traditional topics, we extend and integrate these with
basic ideas in distributed computing.

The authors express their sincere appreciation to Gary Harkin, Montana State Uni-
versity; Mukkai Krisnimoorthy, Rensselaer Polytechnic Institute; Scott Cannon, Utah
State University; John Hartman, University of Arizona; Gopal Lakhani, Texas Tech;
Herb Mayer, Portland State University; and Chung Kuang-Shene, Michigan Technolog-
ical University for their review of the book.

CONTENTS

After the introductory chapter, the book is organized into four main sections: Process
Management and Coordination, Memory Management, File and /O Management, and
Protection and Security. At the end of each chapter, there is a list of the key concepts,
terms, and abbreviations defined in the chapter; the back of the book contains a glossary.

Processes and Threads

Processes and, more recently, threads, are the basis of concurrency and parallelism,
and have always been prominent parts of the study of operating systems. This area
can be subdivided into two components: the creation of processes or threads, and their
coordination. In Chapters 2 and 3, we treat the topic from the programming point of view,
presenting a spectrum of constructs for expressing concurrency and for coordinating
the execution of the resulting processes or threads. This includes the coordination of
processes in a distributed environment, which must be based ultimately on message-
passing rather than shared variables. In Chapters 4 and 5, we examine the problem

v



vi Preface

from the implementation point of view by presenting the necessary data structures and
operations to implement and manage processes and threads at the operating systems
level. This discussion also includes issues of process and threads scheduling, interrupt
handling, and other kernel functions. Chapter 6 is concerned with the important problem
of deadlocks in both centralized and distributed systems.

Main Memory

Main memory has always been a scarce resource, and much of the past operating systems
research has been devoted to its efficient use. Many of these results have become classical
topics of operating systems; these are covered in Chapters 7, 8, and 9. Among these topics
are techniques for physical memory allocation, implementation of virtual memory using
paging or segmentation, and static and dynamic sharing of data and code. We also present
the principles of distributed shared memory, which may be viewed as an extension of
virtual memory over multiple computers interconnected by a communication network.

File Systems and /O

Files were devised in the early days of computing as a convenient way to organize and
store data on secondary storage devices. Although the devices have evolved dramatically,
the basic principles of files have not. In Chapter 10, we discuss file types and their
representations on disks or tapes. We also present ways of organizing and implementing
file directories. In recent years, the most significant developments in the file systems
area have been driven by the proliferation of networking. Many systems today do not
maintain their own file systems on local drives. Instead, a more typical configuration is
a network of machines, all accessing dedicated file servers. Frequently, the file systems
are distributed over multiple servers or multiple networks. The last section of the chapter
addresses file systems issues in such distributed environments. '

Hiding the details of individual /O devices by supporting higher-level abstractions
has always been one of the main tasks of operating systems. Modern systems must
continue to provide this essential service, but with a larger variety of faster and more
sophisticated devices. Chapter 11 is devoted to this topic, presenting the principles of
polling, interrupts, and DMA, as employed by various device drivers. Also discussed
are device-independent aspects of I/O processing, including buffering and caching, error-
handling, and device scheduling.

Protection and Security

Protecting a computing facility from various attacks requires a broad spectrum of safe-
guards. Chapter 12 focuses on the protection and security interface of the system, which
guards the system access. This requires authentication of users, remote services, and
clients. Despite many technological breakthroughs, user authentication still relies largely
on passwords presented by users at the time of login. But the existence of computer net-
works has again stimulated the most dramatic developments in protection and security:
the vulnerability of communication lines makes it necessary to employ techniques in
secret or public key cryptography. We discuss the application of cryptographic methods
both to protect information transmitted between computers and to verify its authenticity.

Once a user has entered the system, the system must control the set of resources
accessible to that user. This is accomplished by hardware mechanisms at the instruction



Preface vii

level and by access or capability lists at the software level. In addition, mechanisms to
prevent unauthorized flow of information among different users also must be provided.
Chapter 13 discusses such internal protection mechanisms.

EXERCISES AND PROGRAMMING PROJECTS

Each chapter ends with a set of exercises reflecting the presented topics. The exercises
have been chosen carefully to satisfy the needs of different teaching styles. Each exercise
set contains both analytical and constructive exercises, where students must apply con-
ceptual knowledge acquired from the chapter to solve specific problems. We also have
included questions that lend themselves to discussion or speculative analysis. A solutions
manual is available to professors; they can obtain a copy from their local Prentice-Hall
representative.

The set of five large programming projects and several smaller programming exer-
cises at the end of the book are designed to complement the conceptual understanding
gained from the book with practical hands-on experience. They may be used selectively
as term projects or can serve as the basis for a separate laboratory component in operating
systems.

APPROACH AND PHILOSOPHY

As expected, we provide in-depth coverage of all standard topics in the field of operating
systems. A conventional approach typically also includes separate chapters on operating
systems support for distributed network-based environments, usually appearing at the end
of the text. The problem with this organization is that it makes an artificial distinction
between centralized and distributed systems. In reality, there is often no clear demarcation
line between the two, and they have many issues in common. Concurrency and parallelism
have always been a major topic of operating systems. Even the earliest mainframes of
the 1950s and 1960s attempted to overlap CPU execution with /O processing to achieve
better utilization of both. Advanced programming techniques of the 1970s and 1980s
made it necessary to support concurrent processes at the user level, leading operating
systems designers to provide new process synchronization and scheduling techniques,
many of which also apply to networked environments. The last two decades have forced
software manufacturers to seriously consider networking and physical distribution, and
to integrate the necessary tools and techniques into their operating systems products.

We have chosen to preserve the natural relationship and overlap between central-
ized and distributed operating systems issues by integrating them within each chapter.
The main distributed operating systems topics presented include message-based synchro-
nization and remote procedure calls, distributed deadlocks, distributed shared memory,
distributed file systems, and secure communication using cryptography.

Following the above philosophy, we also have refrained from presenting case
studies of existing operating systems in separate chapters. Instead, we have distributed
and integrated all case studies—from Unix, Linux, Windows, and many other influential
operating systems—throughout the chapters. They illustrate the relevance of each concept
at the time of its presentation.

Lubomir Bic
September 2002 Alan Shaw



Contents

1 Introduction

1.1 The Role of Operating Systems

1.1.1 Bridging the Hardware/Application Gap . . . .. .. ... ...

1.1.2 Three Views of Operating Systems

1.2 Organization of Operating Systems . . . . ... ... ... ... .....
1.2.1 Structural Organization. . . . . .. ... .. ... ... .....
122 The Hardware Interface . . . . ... .. ... ..........
1.2.3 The Programming Interface . . . ... ... ... .. ......
1.24 The UserInterface . . . ... ... ... ... ...
1.25 Runtime Organization . .. ... ... ... ... ........

1.3 Operating System Evolution and Conecepts . . . .. ... ... .....

1.3.1 Early Systems

...........................

1.3.2 Batch Operating Systems . . . . . . . ... ... ........
1.3.3 Multiprogramming Systems . . . . . . . .. ... 0. ...
1.3.4 Interactive Operating Systems . . . . . . .. ... ... .....
1.3.5 Personal Computer and Workstation Operating Systems . . . . .
1.3.6 Real-Time Operating Systems . . . . . ... ... ... ...
1.3.7 Distributed Operating Systems . . . . . . .. ... ... ...,

Part One Process Management and Coordination

2 Basic Concepts: Processes and Their Interactions

2.1 The Process Notion . .

...........................

2.2 Defining and Instantiating Processes . . . . . . ... ... ... .. ...
2.2.1 Precedence Relations Among Processes . . . . . . .. ... ...
2.2.2 Implicit Process Creation . . . . ... ..............
2.2.3 Explicit Process Creation with fork and join . . . .. ... ...
2.2.4 Process Declarations and Classes . . . . .............

2.3 Basic Process Interactions . . . . . . . ... ... .o
2.3.1 Competition: The Critical Section Problem . . . . .. ... ...

2.3.2 Cooperation . .
24 Semaphores . .. ...

...........................

24.1 Semaphore OperationsandData. . . . . .. ... ........
2.4.2 Mutual Exclusion with Semaphores . . . .. ... ... ... ..
2.4.3 Semaphores in Producer/Consumer Situations . . . . ... ...

2.5 Event Synchronization

...........................

......................

—

1
11
12
15
17
24
25
26
27
28
30
31
32
33

37

39
39
41
41

47
51
52
52
58
59

61
62

ix



X

3

Contents

Higher-Level Synchronization and Communication
3.1 Shared Memory Methods . . . . . ... .. ... ... ... ... ...

311 Monitors .. ... e e e e e e
312 Protected Types. . . . . .. . . .. ... e
3.2 Distributed Synchronization and Communication . . . ... ... . ...
3.2.1 Message-Based Communication . . . . . .. .. ... ... ...
3.2.2 Procedure-Based Communication . ... .............
32.3 Distributed Mutual Exclusion . . ... ... ...........
3.3 Other Classic Synchronization Problems . ... .............
33.1 The Readers/Writers Problem . . . . . . .. ... ........
3.3.2 The Dining Philosophers Problem . . . . .. ... ..... ...

33.3 The Elevator Algorithm . .. ... ................
334 Event Ordering with Logical Clocks . . . ... .........

The Operating System Kernel: Implementing Processes and Threads
4.1 Kemel Definitions and Objects
42 Queue SHUCIITES . . . . . . . . . vt i et e e e
42.1 Resource Queues in an Operating System . . . . .. ... ...
422 Implementations of Queves . . .. ... .. ...........
43 Threads . . . . .. . .. e e e e
4.4 Implementing Processes and Threads . . . ... .............
44.1 Process and Thread Descriptors . . . .. .. ... ... .....
4.4.2 Implementing Operations on Processes . . . ... ..... ...
443 OperationsonThreads . . .. ... ................
4.5 Implementing Synchronization and Communication Mechanisms . . . .
451 SemaphoresandLocks. . ... .. ... .............
45.2 Monitor Primitives . . . . ... ... . ..... .. .......
453 Clock and Time Management . . . ... .............
454 Communication Primitives . . . . . ... ... ... .......
46 InterruptHandling . .. ... ... ..... ... ... ... . .....

.......................

Process and Thread Scheduling

5.1 Organization of Schedulers . . . . . . . ... ... ... ..........
5.1.1 Embedded and Autonomous Schedulers . ... .........
5.1.2 Priority Scheduling . . . .. ... ... ... .. . ... ...,

52 Scheduling Methods . . . ... ... ... .. ... ... ... ...
52.1 A Framework for Scheduling . ..................
52.2 Common Scheduling Algorithms . . . . ... ..........
523 Comparisonof Methods . . . . .. ... ... ..........

5.3 ProrityInversion . . . .. ... ... e

5.4 Multiprocessor and Distributed Scheduling . . . . ... .........

Deadlocks

6.1 Deadlock with Reusable and Consumable Resources . . . . . . . . ...
6.1.1 Reusable and Consumable Resources . . .. .. ... ... ...
6.1.2 Deadlocks in Computer Systems . . . ... ...........

© 6.2 Approaches to the Deadlock Problem .. . .. ... ...........



Contents xi

63 ASystemModel . . ... ... ... ... .. ... 182
63.1 Resource Graphs . . ... ... .................. 182
6.32 State Transitions . . . .. ... ... ............... 183
6.3.3 Deadlock States and Safe States . . . . . ... .......... 184

6.4 Deadlock Detection . . . . .. ... . ... ... ... .......... 186
6.4.1 Reduction of Resource Graphs . . .. ... ........... 187
6.4.2 Special Cases of Deadlock Detection . . .. ... ........ 187
6.4.3 Deadlock Detection in Distributed Systems . . . . . ... . ... 189

6.5 Recovery fromDeadlock . . . . .. .. ... ... ... .......... 192
6.5.1 Process Termination . . .. .. ................., 192
6.5.2 Resource Preemption . . . . .. .................. 193

6.6 Dynamic Deadlock Avoidance . . . . . .. .. ... ... ... ...... 194
6.61 ClaimGraphs. ... ........................ 194
6.6.2 The Banker’s Algorithm . . . . .. ... ... .......... 194

6.7 Deadlock Prevention . .. ... ...................... 197
6.7.1 Eliminating the Mutual-Exclusion Condition . . . ... .. ... 198
6.7.2 Eliminating the Hold-and-Wait Condition . . . . . ... ... .. 198
6.7.3 Eliminating the Circular-Wait Condition . . ... ... ... .. 199

Part Two Memory Management 205
7 Physical Memory 207

7.1 Preparing a Program for Execution ... ................. 207
7.1.1 Program Transformations . . ... ..............._. 207
7.1.2  Logical-to-Physical Address Binding . . . ... ... ...... 208

7.2 Memory Partitioning Schemes . . . . .. . ... ... .. ........ 212
7.2.1 FixedPartitions . . . . . ... ... ... ... .......... 213
7.2.2 Variable Partitions . . . ............ ... .. .. ... 214
723 TheBuddy System . . . .. .. ... ............... 218

7.3 Allocation Strategies for Variable Partitions . . . . . . ... ... .... 220
7.3.1 Measures of Memory Utilization ... .............,. 221

7.4 Managing Insufficient Memory . . . . . ... ... ... ... .... 224
741 Memory Compaction . . . . . .. ................. 224

8 Virtuat Memory 231

8.1 Principles of Virtual Memory . .. .. .................. 231

8.2 Implementations of Virtual Memory . . . .. ... ... ......... 233
821 Paging ......... ... ... e e 233
822 Segmentation . ... .. .... ... ... .. ..., 240
8.2.3 Paging with Segmentation . . . . . ... ... .......... 241
824 Pagingof SystemTables. . . .. ................. 242
8.2.5 Translation Look-Aside Buffers . . . ... ............ 245

8.3 Memory Allocation in Paged Systems . . . . . ... ... ... ..... 246
8.3.1 Global Page Replacement Algorithms . . . . . . ... ... ... 249
8.3.2 Local Page Replacement Algorithms . . . . ... ........ 256
8.3.3 Load Control and Thrashing . . . .. ... ... ......... 262

8.3.4 EvaluationofPaging . . .. .. ... ... ............ 266



xii Contents

9 Sharing of Data and Code in Main Memory

9.1

9.2
93

94

95

9.6

Single-Copy Sharing . . .. .. .. ... ... ... .. ... . ...
91.1 ReasonsforSharing .. ............. ... ... ......
9.1.2 Requirements for Sharing . . ... ................
913 Linkingand Sharing . . ... ... ................
Sharing in Systems without Virtual Memory . . . . .. ... .. .. ..
Sharing in Paging Systems . . . . .. ... ... . . 0oL
93.1 SharingofData. .. .. ... . ... ... . o 0 L
932 SharingofCode .. ................. .. .....
Sharing in Segmented Systems . . . . . . . .. ... ... L.
94.1 SharingofCodeandData . . ... ... .............
9.4.2 Unrestricted Dynamic Linking . . . .. ... .. .. .......
Principles of Distributed Shared Memory . . . . . . . .. ... .....
9.5.1 The User’s View of Distributed Shared Memory . . . . . . . ..
Implementations of Distributed Shared Memory . ... . ... ... ..
9.6.1 Implementing Unstructured Distributed Shared Memory . . . . .
9.6.2 Implementing Structured Distributed Shared Memory . . . . . .

Part Three File Systems and Input/Output

10 File Systems
10.1 Basic Functions of File Management . . ... .. ... .........
10.2 Hierarchical Model of a File System . . . ... .............
103 The User's Viewof Files . . . . . .. . . ... .. ... ... .....

10.3.1 File Namesand Types . . . . .. ... .. . v,
10.3.2 Logical File Organization . . . . ... .. ... .........
10.3.3 Other File Attributes . . . . . .. . ... ... ... .......
1034 Operationson Files. . . .. ... ... ... ... ........

10.4 File Directories . . . . . . . . . v v v v v i i e e

10.4.1 Hierarchical Directory Organizations . . . ... .. ... . ...
10.4.2 Operations on Directories . . . . .. .. ... ... .......
10.4.3 Implementation of File Directories . . . . .. ... ... .. .

105 BasicFile System . . . . . . . . . . . . 0 e

10.5.1 FileDescriptors . . . . . .. ... .. . .
10.5.2 Openingand Closing Files . . . . .. ... ... ... ......

10.6 Device Organization Methods . . . . . . ... .. ... ... ......

10.6.1 Contiguous Organization . . . . . .. . . . .. v v v v v
10.6.2 Linked Organization . . .. . .. ... .. ... .........
10.6.3 Indexed Organization . ......................
10.6.4 Management of Free Storage Space . . . . . ... ........

10.7 Principles of Distributed File Systems . . . . . . .. .. ... .. ....

10.7.1 Directory Structures and Sharing . . . . ... . ... ... ..
10.7.2 Semanticsof FileSharing . . . . . ... ... ..........

10.8 Implementing Distributed File System . . . . . . ... . .........

10.8.1 Basic Architecture . . . . . . . . . it i e e e
10.82 Caching . . . . . . . . . .. i e e

274
274
274
275
271
278
279
279
281
283
283
284
287
288
290
290
296



Contents xiii

10.8.3 Stateless Versus Stateful Servers . . . . ... ... ....... 346
10.84 File Replication . . . ... .. ... .. ..o vo... 349

11 Input/Output Systems 357
11.1 Basic Issues in Device Management . . . . . . . ... ... ....... 357
11.2 A Hierarchical Model of the Input/Output System . . . . . .. ... .. 359
11.2.1 The Input/Output System Interface . . . ... .......... 359

113 Input/Output Devices . . . . . .. . ... .. ... ... ... ... 363
1131 User Terminals . . . . . . . . ... . ... ... ..., 363
11.3.2 Printers and Scanners . . . . . . ... ... ... ... .. 366
11.3.3 Secondary Storage Devices . . . . ... ... ... ....... 367
11.3.4 Performance Characteristics of Disks . . . . ... ........ 370
11.3.5 Networks . . . . . . . . ... e 372

114 Device Drivers . . . . . . . . .. . . e e 373
11.4.1 Memory-Mapped Versus Explicit Device Interfaces . . . . . . . 375
11.4.2 Programmed Input/Output with Polling . . . . .. ... ... .. 376
11.4.3 Programmed Input/Output with Interrupts . . . . . . .. ... .. 379
1144 Direct Memory ACCeSs . . . . . v v v v v v v v it 383

11.5 Device Management . . . .. ... ... ... ... . ... . ...... 386
11.5.1 Buffering and Caching . . . . . ... .. ... ... ....... 386
1152 ErrorHandling . . . . .. .. ... .. ... . ... ....... 392
1153 Disk Scheduling . . . .. .. ... ................ 397
1154 Device Sharing . . . . ... ... ... ... ........... 400
Part Four Protection and Security 405
12 The Protection and Security Interface 407
121 Security Threats . . . . . . . . .. ... . i i 407
12.1.1 Damage Types . . . . . . . . . . . . e 408
12.1.2 Vulnerable Resources . . . . ... ... ... ... ....... 409
1213 Attack Types . . . . . .. . .. L 410

12.2 Functions of a Protection System . . . ... .. ... ... ....... 418
12.2.1 External Safeguards . ... . ... ... ... ... .. ..... 418
12.2.2 Verification of User Identity . . . . . .. ... ... .. ..... 419
12.2.3 Communication Safeguards . . . . . .. ... ... ....... 420
12.2.4 Threat Monitoring . . . . . . . ... .. ... ... ....... 420

123 User Authentication. . . . . . ... .. ... ... .. ... ... 420
12.3.1 Approaches to Authentication . . . . . ... ... ... ... .. 420
1232 Passwords . . . . . . . .. oo 422

124 Secure Communication . . . . . . . . . ... ..o 426
12.4.1 Principles of Cryptography . . . .. ... .. ... ... .. .. 426
12.42 Secret-Key Cryptosystems . . . . .. ... .. ... ....... 428
12.4.3 Public-Key Cryptosystems . . . .. . .. ... ... ... 433

13 Internal Protection Mechanisms 442

13.1 The Access Control Environment . . . .. ... ... ... ....... 442



xiv  Contents
13.2 Instruction-Level Access Control . . . . . . ... ... .. ... .. .. 443
13.2.1 Register and Input/output Protection . . . . . . .. ... . ... 443
13.2.2 Main Memory Protection . . . . .. ... ... ......... 444
13.3 High-Level Access Control . . . . . .. . .. ... ... .. ....... 450
13.3.1 The AccessMatrix Model . . . . . . ... ... ......... 450
13.3.2 Access Lists and Capability Lists . . . .. ... .. ... .... 452
13.3.3 A Comprehensive Example: Client/Server Protection . . . . . . 461
13.3.4 Combining Access Lists and Capability Lists . . . .. ... .. 463
13.4 Information Flow Control . . . . . ... ... ... ... .. ... ... 464
13.4.1 The Confinement Problem . . . . . . ... ... .. ....... 464
13.4.2 Hierarchical Information Flow . . . . . .. ... .. ... . ... 467
13.4.3 The Selective Confinement Problem . .. ... .. ... .. .. 469
Part Five Programming Projects 475
I Process/Thread Synchronization 477
1 Project Overview . . . . . . ... . ... ... ... ... ....... 477
2  SettingUpaRaceCondition . . . .. ... ................ 477
3 Solutions to the Critical Section Problem . . . . . ... ... ...... 478
3.1 Solution Using mutex Locks. . . . ... . ... ... ... ... 478
32 Software Solution . . . ... ... ... .. ... .. ... ... 479
4 Implementing General Semaphores . . . . .. ... ... ........ 479
4.1 Solution Using Mutex Locks and Condition Variables . . . . . . 479
4.2 Software Solution . . . . . ... ... ... .. ... ... ... 479
5 Bounded Buffer . . . . . ... ... .. ... ... . . ... 480
6 Summary of Specific Tasks . . . ... ... ... .. ..., ..... 480
7 Ideas for Additional Tasks . . . . ... .. ... .. ... ... ..... 480
II' Process and Resource Management 482
1 Project Overview . . . . . . . .. ... 482
2 Basic Process and Resource Manager . . . ... ... .......... 482
2.1 Process States . . . . .. ... .o L oL L. 482
22 Representation of Processes . . . . . ... ... . ... ..... 483
2.3 Representation of Resources . . . . . . .. .... ... ..... 483
2.4 Operations on Processes and Resources . . . . .. ... ... .. 484
25 The Scheduler . . . ... ... ... ... .. ... ....... 485
2.6 The Presentation Shell . . . . . . .. ... ... ... ...... 487
3 Extended Process and Resource Manager . . . . . ... ......... 488
3.1 Timeout Interrupts . . . . . . . . .. ... ... ... ..., 488
32 Input/Output Processing . . . . . .. .. ... ... ....... 489
33 The Extended Shell . . . . .. ... .. ... ... . 0., 489
4 Summary of Specific Tasks . . .. .. ... .. ... . ... ... 490
5 Ideas for Additional Tasks . . . .. ... .. .. .. ... ........ 490
11 Main Memory Management 492
1 Project Overview . . . . . . . . .. L e 492



Contents

2  The Memory Manager . . . . ... .. ... ... .. ... . ...,
2.1 Main Memory . . . . .. ... L
22 The User Interface . . . . . . . .. ... ... ... ... ....
3 The Simulation Experiment . . . . .. .. ... ... ... .. .. ...
3.1 Generating Request Sizes . . . .. ... ... ... ...
3.2 Gathering Performance Data . . . . . . ... ... ... ... ..
33 Choosing a Block to Release . . . . . . ... .. ... .....
4  Summary of Specific Tasks . .. ... .. ... ... .. ... ...
5 Ideas for Additional Tasks . . . . . .. ... .. .. ... ... .....

IV Page Replacement Algorithms

1 Project Overview . . . . . . . . .. . . . .. Lo
Global Page Replacement Algorithms . . . . . . .. ... ... ... ..
Local Page Replacement Algonithms . . . .. ... ... ... ... ..
Generating Reference Strings . . . . . . . ... ... ... L.
Performance Evaluations . . . .. ... .. ... ...... ... .. ..
Summary of Specific Tasks . . . . .. ... . L0000
Ideas for Additional Tasks . . . . ... .. ... .. .. ... ......

N AN bR wWN

File System

1 Project Overview . . . . . . . . . . .. .

2  The Input/Output System . . . . . . . . .. ... ... ...

3 TheFleSystem . ... ... ... ... ... ... ...
3.1 Interface Between User and File System . . . . . .. ... ...
3.2 Organization of the File System . . . . . . ... ... ... ...
33 The Directory . . . . . .. . . . ... ..
34 Creating and Destroying aFile . . ... ... ... ... ....
35 Opening and Closinga File . . .. .. ... ... ........
3.6 Reading, Writing and Seeking inaFile . . . . . ... ... ...
3.7 Listing the Directory . . . . . . .. .. ... ... ..

4  The Presentation Shell . . ... ... ... ... .. ... ..... ...

5  Summary of Specific Tasks . . .. . ... .. ... ... ... ..

6  Ideas for Additional Tasks . . . . . . ... .. ... .. ... ...,
Other Programming Projects

1 Timer Facility . . . . . .. . .. . ... . e
2  Process Scheduling . . ... ... ... ... ... L.
3  TheBanker's Algorithm . . . . .. . ... ................
4  Disk Scheduling Algorithm . . . . .. .. .. ... .. ... L.
5 Stable Storage . . . . . ... ..o e
Glossary

Bibliography

Author Index

Subject Index

XV

525
529
531



CHAPTER 1

Introduction

1.1 THE ROLE OF OPERATING SYSTEMS
1.2 ORGANIZATION OF OPERATING SYSTEMS
1.3 OPERATING SYSTEM EVOLUTION AND CONCEPTS

We begin by examining the gap between the requirements and expectations placed on
computer systems by the user community and the low-level capabilities of existing hard-
ware. This gap is bridged by the operating system (OS) and other utility and support
programs. We then outline the overall organization of OS, including interfaces to the
hardware, the application programs, and the user. The remainder of the chapter traces
the evolution of key OS concepts in the context of changing technology and the increasing
diversity and sophistication of the user community.

1.1 THE ROLE OF OPERATING SYSTEMS
1.1.1 Bridging the Hardware/Application Gap

Most computer systems today are based on the principles of a “stored-program computer”
formulated by mathematician John von Neumann and others in the late 1940s. The
basic components of a computer and their interconnections are shown schematically in
Figure 1-1 in the form of a high-level block diagram. At the heart of this system is
the computational engine consisting of a central processing unit (CPU} and executable
main memory. The memory is a linear sequence of directly addressable cells; it holds
programs (lists of executable machine instructions} and data. The CPU continuously
repeats the following basic hardware cycle:

¢ Fetch the instruction pointed to by a special register called the program counter.
e Increment the program counter.

e Decode the current instruction, held in a special instruction register, to determine
what must be done.

e Fetch any operands referenced by the instruction.
o Execute the instruction.

This cycle forms the basis of all computations on present-day computers.

For this computational scheme to be of any practical value, two fundamental com-
ponents must be included. The first is a set of communication devices to allow data and
commands to be exchanged between the user and the machine or between one computer

1



2 Chapter 1 Introduction

Main icati
CPU Commu_mcatlon User
memory devices ‘
T Network
Secondary
storage

FIGURE 1-1. Main components of a computer system.

and another. Tt consists of input/output (/Q) devices (e.g., a keyboard and display
terminal) and network interface devices. The second component is secondary storage
to hold programs and data that are not currently loaded in main memory or that are
only partially or temporarily loaded. This storage is needed because the system’s main
memory is volatile and thus loses its contents when power is turned off, and because it
is also much smaller in size than secondary storage.

Sometimes the distinction between communication and storage devices is clear
cut. For example, a CD-ROM drive is strictly an input device, whereas a hard disk is
clearly a storage device. However, there are also common cases where such a distinction
cannot be made easily. For example, a removable diskette can be viewed as storage,
but it also can be used as an /O device when moving information between different
systems. From an operating system’s perspective, CD-ROM, hard disk, diskette, and
other devices are similar in nature, and many of the same techniques are employed to
service them. We will refer to secondary storage and communication devices jointly as
I/O devices.

Another degree of complexity is added when the computer system consists of more
than one CPU, This can take several different forms, depending on the sharing level of
the system’s hardware components. Figure 1-2 shows three possible architectures that
extend the basic single-CPU architecture of Figure 1-1 in different ways. In the first
case (Fig. 1-2a), the two CPUs share a common main memory. The secondary storage
and communication devices are typically shared. The presence of multiple CPUs poses
new challenges for the OS. One of these is caching. If each CPU maintains its own
local memory cache, the system must ensure that two caches do not contain different
values for the same memory element. With a shared memory, this problem, referred to
as cache coherence, is handled by the hardware and is transparent to the OS. Another
important problem is the scheduling of processes. With a single CPU, scheduling is a
matter of controlling the order in which processes execute. With multiple CPUs, the OS
(or the application) also must decide on which CPU a given task should run. Synchro-
nization and communication among processes running on different CPUs is performed
through the shared memory; the approaches are similar to those for coordinating processes
on a single CPU.

Figure 1-2b shows an architecture where each CPU has its own main memory. The
secondary storage and other devices could still be shared. However, the communication
subsystem must include an interconnection network that allows the CPUs to interact with
each other, since no shared memory is available. There is a broad range of interconnection
networks, ranging from a simple shared bus to dedicated connections arranged in a



Section 1.1 The Role of Operating Systems

CPU
Main Communication
memory devices
Secondary
storage
(a)
Main
memory CPU
Communication
Mai / devices
ain
memory CPU
Secondary
storage
(b)
Main Communication
memory CPU devices

-4

e

Secondary 3

storage %

Main CPU Commu.mcation
memory devices
Secondary
storage
(©

FIGURE 1-2. Systems with multiple CPUs: (a) Shared-memory multiprocessor;
(b) Distributed-memory multiprocessor; and (c) Multicomputer.

variety of topologies. In the absence of shared memory, both scheduling and process
coordination become more complicated. Scheduling involves not only the assignment
of processes to different CPUs but also the assignment of data, some of which may be
needed by multiple processes, to the disjoint local memory modules. Given that such



