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Preface

MATLAB (short for MATrix L. ABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB language, and provides a
very extensive library of predefined functions to make technical programming
tasks easier and more efficient. This extremely wide variety of functions makes it
much easier to solve technical problems in MATLAB than in other languages
such as Fortran or C. This book introduces the MATLAB language, and shows
how to use it to solve typical technical problems.

This book teaches MATLAB as a technical programming language, showing
students how to write clean, efficient, and well-documented programs. It makes no
pretense at being a complete description of all of MATLAB’s hundreds of func-
tions. Instead, it teaches the student how to use MATLAB as a language, and how
to locate any desired function with MATLAB’s extensive online help facilities.

The first six chapters of the text are designed to serve as the text for an “In-
troduction to Programming / Problem Solving” course for freshman engineering
students. This material should fit comfortably into a 9-week, 3-hour course. The
remaining chapters cover advanced topics such as input/output and graphical user
interfaces. These chapters may be covered in a longer course, or used as a refer-
ence by engineering students or practicing engineers who use MATLAB as a part
of their coursework or employment.

Changes in the Second Edition

The second edition of this book is specifically devoted to MATLAB versions 6.0
and 6.1. While the basic MATLAB language has been largely constant since the
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relcase of version 5.0, the integrated tools, the windows, and the help subsystem
have changed dramatically. In addition, a completely new paradigm for the design
of MATLAB GUIs was introduced in version 6.0. Users working with versions of
MATLAB before version 6.0 should be aware that the description of GUI devel-
opment in Chapter 10 does not apply to them.

The book also covers the minor but important improvements in the language
itself, such as the introduction of the continue statement.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared to conventional computer languages
for technical problem solving. Among them are:

1. Ease of Use

MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to ex-
ecute large prewritten programs. Programs may be easily written and
modified with the built-in integrated development environment, and de-
bugged with the MATLAB debugger. Because the language is so easy to
use, it is ideal for educational use, and for the rapid prototyping of new
programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, online documen-
tation and manuals, a workspace browser, and extensive demos.

. Platform Independence

MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows 9x/NT/2000 and many different ver-
sions of UNIX. Programs written on any platform will run on all of the
other platforms, and data files written on any platform may be read trans-
parently on any other platform. As a result, programs written in MATLAB
can migrate to new platforms when the needs of the user change.

. Predefined Functions

MATLAB comes complete with an extensive library of predefined func-
tions that provide tested and prepackaged solutions to many basic techni-
cal tasks. For example, suppose that you are writing a program that must
calculate the statistics associated with an input data set. In most lan-
guages, you would need to write your own subroutines or functions to im-
plement calculations such as the arthmetic mean, standard deviation,
median, etc. These and hundreds of other functions are built right into the
MATLAB language, making your job much easier.

In addition to the large library of functions built into the basic MAT-
LAB language, there are many special-purpose toolboxes available to
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help solve complex problems in specific areas. For example, a user can
buy standard toolboxes to solve problems in signal processing, control
systems, communications, image processing, and neural networks, among
many others.

4. Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on
any graphical output device supported by the computer on which MAT-
LAB is running. This capability makes MATLAB an outstanding tool for
visualizing technical data.

5. Graphical User Interface
MATLAB includes tools that allow a programmer to interactively
construct a graphical user interface (GUI) for his or her program. With
this capability, the programmer can design sophisticated data analysis
programs that can be operated by relatively inexperienced users.

6. MATLAB Compiler

MATLAB’s flexibility and platform independence is achieved by
compiling MATLAB programs into a device-independent p-code, and
then interpreting the p-code instructions at run-time. This approach is
similar to that used by Microsoft’s Visual Basic language. Unfortunately,
the resulting programs can sometimes execute slowly because the MAT-
LAB code is interpreted rather than compiled. We will point out features
that tend to slow program execution when we encounter them.

A separate MATLAB compiler is available. This compiler can com-
pile a MATLAB program into a true executable that runs faster than the
interpreted code. It is a great way to convert a prototype MATLAB pro-
gram into an executable suitable for sale and distribution to users.

Features of This Book

Many features of this book are designed to emphasize the proper way to write re-
liable MATLAB programs. These features should serve a student well as he or she
is first learning MATLAB, and should also be useful to the practitioner on the job.

They include:

1. Emphasis on Top-Down Design Methodology
The book introduces a top-down design methodology in Chapter 3, and
then uses it consistently throughout the rest of the book. This methodol-
ogy encourages a student to think about the proper design of a program
before beginning to code. It emphasizes the importance of clearly defin-
ing the problem to be solved and the required inputs and outputs before
any other work is begun. Once the problem is properly defined, it teaches
the student to employ stepwise refinement to break the task down into
successively smaller subtasks, and to implement the subtasks as separate
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subroutines or functions. Finally, it teaches the importance of testing at all
stages of the process, both unit testing of the component routines and ex-
haustive testing of the final product.

The formal design process taught by the book may be summarized as
follows:

s Clearly state the problem that you are trying to solve.

m Define the inputs required by the program and the outputs to be
produced by the program.

m Describe the algorithm that you intend to implement in the program.
This step involves top-down design and stepwise decomposition,
using pseudocode or flow charts.

= Turn the algorithm into MATLAB statements.

® Test the MATLAB program. This step includes unit testing of specific
functions, and also exhaustive testing of the final program with many
different data sets.

. Emphasis on Functions

The book emphasizes the use of functions to logically decompose tasks
into smaller subtasks. It teaches the advantages of functions for data hid-
ing. It also emphasizes the importance of unit testing functions before
they are combined into the final program. In addition, the book teaches
about the common mistakes made with functions, and how to avoid them.

. Emphasis on MATLAB Tools

The book teaches the proper use of MATLAB?’s built-in tools to make pro-
gramming and debugging easier. The tools covered include the Launch
Pad, Editor / Debugger, Workspace Browser, Help Browser, and GUI de-
sign tools.

. Good Programming Practice Boxes

These boxes highlight good programming practices when they are intro-
duced for the convenience of the student. In addition, the good program-
ming practices introduced in a chapter are summarized at the end of the
chapter. An example Good Programming Practice box is shown below.

Always indent the body of an if construct by 2 or more spaces to improve the
readability of the code.

5. Programming Pitfalls Boxes

These boxes highlight common errors so that they can be avoided. An ex-
ample Programming Pitfalls box follows.
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Make sure that your variable names are unique in the first 31 characters.
Otherwise, MATLAB will not be able to tell the difference between them.

6. Emphasis on Data Structures
Chapter 7 contains a detailed discussion of MATLAB data structures, in-
cluding sparse arrays, cell arrays, and structure arrays. The proper use of
these data structures is illustrated in the chapters on Handle Graphics and
Graphical User Interfaces.

Pedagogical Features

The first six chapters of this book are specifically designed to be used in a fresh-
man “Introduction to Programming / Problem Solving” course. It should be pos-
sible to cover this material comfortably in a 9-week, 3-hour course. If there is
insufficient time to cover all of the material in a particular Engineering program,
Chapter 6 may be deleted, and the remaining material will still teach the funda-
mentals of programming and using MATLAB to solve problems. This feature
should appeal to harassed engineering educators trying to cram ever more mate-
rial into a finite curriculum.

The remaining chapters cover advanced material that will be useful to the en-
gineer and students as they progress in their careers. This material includes ad-
vanced input/output and the design of graphical user interfaces for programs.

The book includes several features designed to aid student comprehension. A
total of 15 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix B. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 140 end-of-chapter exer-
cises. Answers to selected exercises are available at the book’s Web site, and of
course answers to all exercises are included in the Instructor’s Manual. Good pro-
gramming practices are highlighted in all chapters with special Good Program-
ming Practice boxes, and common errors are highlighted in Programming Pitfalls
boxes. End-of-chapter materials include Summaries of Good Programming Prac-
tice and Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Manual containing the solutions
to all end-of-chapter exercises. The source code for all examples in the book is
available from the book’s Web site, and the source code for all solutions in the In-
structor’s Manual is available separately to instructors.

A Final Note to the User

No matter how hard [ try to proofread a document like this book, it 1s inevitable
that some typographical errors will slip through and appear in print. If you should
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spot any such errors, please drop me a note via the publisher, and I will do my
best to get them eliminated from subsequent printings and editions. Thank you
very much for your help in this matter.

I will maintain a complete list of errata and corrections at the book’s Web
site, which is http://info.brookscole.com/chapman. Please check that site for any

updates and/or corrections.
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