EiSHEEFEaIGES N

MATLAB % £

(5 M)

MATLAB Programming for Engineers

(Second Edition)

(RXZER)

Stephen J. Chapman ¥

&ﬂf&&ﬁ'&t‘t

www.sciencep.com

EAERETELERFHM (EXHTIR)

MATLAB %2
(% =)
MATLAB Programming for Engineers
(Second Edition)

Stephen J. Chapman #

4 % & BB
=

R LA

nE &

A RE R EERIRFE GOCEHR)Z—.

A B M PR T MATLAB #4778, i 4 B2 & 3
MEF. HP5EFE T A L FREFRI Tk KRB . MATLAB
WL RKERMBESN, I T — S AR MARE ¥ LR,

FHAER TR S UFRAERHFRHS B, WA TEHEARAS
MEE4,

MATLAB Programming for Engineers,2™ed.

By Stephen J. Chapman

Copyright ©2002

First published by Brooks/Cole, a division of Thomson Learning, United States of America.
All Rights Reserved.

Reprint for the People’s Republic of China by Science Press and Thomson Asia Pte Ltd
under the authorization of Thomson Learning. No part of this book may be reproduced in
any form without the prior written permission of Science Press and Thomson Learning.
A ETRAR R R R B KRG R4 (R BT AEHK),

This edition is only for sale in the People’ s Republic of China (excluding Hong Kong,
Macau SARs and Taiwan) .

981-243-385-6

wm http: //www. thomsonlearning. com

5 :01-2002-5256

W BZERA B (CIP) B4R

MATLAB %8 : 5 2 i /() &£ % 8 (Chapman,S.].) §E —FH A,
—ib &L B Rk, 2003

(ESNERE FRIABEFEEH)

ISBN 7-03-011139-7

I .M 0.Z .HEYEBTE- K ME, MATLAB - FiRit-
BEFR-HH-FEX V. TN391.75

o [R4 P $34% CIP BB (2003) 38 005593 5

Faak. el ¥ F/AGET.EER K SAEHFHNET
4 2 % K oa W
SRR ERRI S 165
BB £RH4: 100717
http:// www. sciencep.com

, a4 ® 4 HE
Behpit T S EBELH

2003FE3 A% — M FA:TIBTXI092 1716
2003 4F 3 HE—KENE] EP3K.311/4
Ep¥.1—3 000 F¥.711 000

EH:41.00 5T
(AN B IR B), At 61 e (B 46))

K] S e B2 L 115 B IR 35 34 (BE S0 AR

M B4 E =

(B REEHEF)
(B = BN %2
AERF ¥ 2 7%
M RE T K % R
HHEKREFE KL H
bR Tl k¥ FHE
JERBEIT A #R KA
KEKF R H
PEBFEFARKE B —F

MRS M A KE
EEMEMRKE
FEBEEARKE
EHEKRF
sl Ee e
HERE

HIL R
REREF

This book is dedicated to my wife, Rosa, after 25 wonderful years together.

Preface

MATLAB (short for MATrix L. ABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB language, and provides a
very extensive library of predefined functions to make technical programming
tasks easier and more efficient. This extremely wide variety of functions makes it
much easier to solve technical problems in MATLAB than in other languages
such as Fortran or C. This book introduces the MATLAB language, and shows
how to use it to solve typical technical problems.

This book teaches MATLAB as a technical programming language, showing
students how to write clean, efficient, and well-documented programs. It makes no
pretense at being a complete description of all of MATLAB’s hundreds of func-
tions. Instead, it teaches the student how to use MATLAB as a language, and how
to locate any desired function with MATLAB’s extensive online help facilities.

The first six chapters of the text are designed to serve as the text for an “In-
troduction to Programming / Problem Solving” course for freshman engineering
students. This material should fit comfortably into a 9-week, 3-hour course. The
remaining chapters cover advanced topics such as input/output and graphical user
interfaces. These chapters may be covered in a longer course, or used as a refer-
ence by engineering students or practicing engineers who use MATLAB as a part
of their coursework or employment.

Changes in the Second Edition

The second edition of this book is specifically devoted to MATLAB versions 6.0
and 6.1. While the basic MATLAB language has been largely constant since the

xiii

xiv

Preface

relcase of version 5.0, the integrated tools, the windows, and the help subsystem
have changed dramatically. In addition, a completely new paradigm for the design
of MATLAB GUIs was introduced in version 6.0. Users working with versions of
MATLAB before version 6.0 should be aware that the description of GUI devel-
opment in Chapter 10 does not apply to them.

The book also covers the minor but important improvements in the language
itself, such as the introduction of the continue statement.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared to conventional computer languages
for technical problem solving. Among them are:

1. Ease of Use

MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to ex-
ecute large prewritten programs. Programs may be easily written and
modified with the built-in integrated development environment, and de-
bugged with the MATLAB debugger. Because the language is so easy to
use, it is ideal for educational use, and for the rapid prototyping of new
programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, online documen-
tation and manuals, a workspace browser, and extensive demos.

. Platform Independence

MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows 9x/NT/2000 and many different ver-
sions of UNIX. Programs written on any platform will run on all of the
other platforms, and data files written on any platform may be read trans-
parently on any other platform. As a result, programs written in MATLAB
can migrate to new platforms when the needs of the user change.

. Predefined Functions

MATLAB comes complete with an extensive library of predefined func-
tions that provide tested and prepackaged solutions to many basic techni-
cal tasks. For example, suppose that you are writing a program that must
calculate the statistics associated with an input data set. In most lan-
guages, you would need to write your own subroutines or functions to im-
plement calculations such as the arthmetic mean, standard deviation,
median, etc. These and hundreds of other functions are built right into the
MATLAB language, making your job much easier.

In addition to the large library of functions built into the basic MAT-
LAB language, there are many special-purpose toolboxes available to

Preface | xv

help solve complex problems in specific areas. For example, a user can
buy standard toolboxes to solve problems in signal processing, control
systems, communications, image processing, and neural networks, among
many others.

4. Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on
any graphical output device supported by the computer on which MAT-
LAB is running. This capability makes MATLAB an outstanding tool for
visualizing technical data.

5. Graphical User Interface
MATLAB includes tools that allow a programmer to interactively
construct a graphical user interface (GUI) for his or her program. With
this capability, the programmer can design sophisticated data analysis
programs that can be operated by relatively inexperienced users.

6. MATLAB Compiler

MATLAB’s flexibility and platform independence is achieved by
compiling MATLAB programs into a device-independent p-code, and
then interpreting the p-code instructions at run-time. This approach is
similar to that used by Microsoft’s Visual Basic language. Unfortunately,
the resulting programs can sometimes execute slowly because the MAT-
LAB code is interpreted rather than compiled. We will point out features
that tend to slow program execution when we encounter them.

A separate MATLAB compiler is available. This compiler can com-
pile a MATLAB program into a true executable that runs faster than the
interpreted code. It is a great way to convert a prototype MATLAB pro-
gram into an executable suitable for sale and distribution to users.

Features of This Book

Many features of this book are designed to emphasize the proper way to write re-
liable MATLAB programs. These features should serve a student well as he or she
is first learning MATLAB, and should also be useful to the practitioner on the job.

They include:

1. Emphasis on Top-Down Design Methodology
The book introduces a top-down design methodology in Chapter 3, and
then uses it consistently throughout the rest of the book. This methodol-
ogy encourages a student to think about the proper design of a program
before beginning to code. It emphasizes the importance of clearly defin-
ing the problem to be solved and the required inputs and outputs before
any other work is begun. Once the problem is properly defined, it teaches
the student to employ stepwise refinement to break the task down into
successively smaller subtasks, and to implement the subtasks as separate

xvi

Preface

subroutines or functions. Finally, it teaches the importance of testing at all
stages of the process, both unit testing of the component routines and ex-
haustive testing of the final product.

The formal design process taught by the book may be summarized as
follows:

s Clearly state the problem that you are trying to solve.

m Define the inputs required by the program and the outputs to be
produced by the program.

m Describe the algorithm that you intend to implement in the program.
This step involves top-down design and stepwise decomposition,
using pseudocode or flow charts.

= Turn the algorithm into MATLAB statements.

® Test the MATLAB program. This step includes unit testing of specific
functions, and also exhaustive testing of the final program with many
different data sets.

. Emphasis on Functions

The book emphasizes the use of functions to logically decompose tasks
into smaller subtasks. It teaches the advantages of functions for data hid-
ing. It also emphasizes the importance of unit testing functions before
they are combined into the final program. In addition, the book teaches
about the common mistakes made with functions, and how to avoid them.

. Emphasis on MATLAB Tools

The book teaches the proper use of MATLAB?’s built-in tools to make pro-
gramming and debugging easier. The tools covered include the Launch
Pad, Editor / Debugger, Workspace Browser, Help Browser, and GUI de-
sign tools.

. Good Programming Practice Boxes

These boxes highlight good programming practices when they are intro-
duced for the convenience of the student. In addition, the good program-
ming practices introduced in a chapter are summarized at the end of the
chapter. An example Good Programming Practice box is shown below.

Always indent the body of an if construct by 2 or more spaces to improve the
readability of the code.

5. Programming Pitfalls Boxes

These boxes highlight common errors so that they can be avoided. An ex-
ample Programming Pitfalls box follows.

Preface | xvii

Make sure that your variable names are unique in the first 31 characters.
Otherwise, MATLAB will not be able to tell the difference between them.

6. Emphasis on Data Structures
Chapter 7 contains a detailed discussion of MATLAB data structures, in-
cluding sparse arrays, cell arrays, and structure arrays. The proper use of
these data structures is illustrated in the chapters on Handle Graphics and
Graphical User Interfaces.

Pedagogical Features

The first six chapters of this book are specifically designed to be used in a fresh-
man “Introduction to Programming / Problem Solving” course. It should be pos-
sible to cover this material comfortably in a 9-week, 3-hour course. If there is
insufficient time to cover all of the material in a particular Engineering program,
Chapter 6 may be deleted, and the remaining material will still teach the funda-
mentals of programming and using MATLAB to solve problems. This feature
should appeal to harassed engineering educators trying to cram ever more mate-
rial into a finite curriculum.

The remaining chapters cover advanced material that will be useful to the en-
gineer and students as they progress in their careers. This material includes ad-
vanced input/output and the design of graphical user interfaces for programs.

The book includes several features designed to aid student comprehension. A
total of 15 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix B. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 140 end-of-chapter exer-
cises. Answers to selected exercises are available at the book’s Web site, and of
course answers to all exercises are included in the Instructor’s Manual. Good pro-
gramming practices are highlighted in all chapters with special Good Program-
ming Practice boxes, and common errors are highlighted in Programming Pitfalls
boxes. End-of-chapter materials include Summaries of Good Programming Prac-
tice and Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Manual containing the solutions
to all end-of-chapter exercises. The source code for all examples in the book is
available from the book’s Web site, and the source code for all solutions in the In-
structor’s Manual is available separately to instructors.

A Final Note to the User

No matter how hard [try to proofread a document like this book, it 1s inevitable
that some typographical errors will slip through and appear in print. If you should

xviii

Preface

spot any such errors, please drop me a note via the publisher, and I will do my
best to get them eliminated from subsequent printings and editions. Thank you
very much for your help in this matter.

I will maintain a complete list of errata and corrections at the book’s Web
site, which is http://info.brookscole.com/chapman. Please check that site for any

updates and/or corrections.

Acknowledgments

I would like to thank Bill Stenquist and the crew at Brooks/Cole for the support
they have given me in getting this book to market. It has been gratifying to see
the user response to the first edition, which was the result of our joint efforts.

In addition, I would like to thank my wife, Rosa, and our children, Avi,
David, Rachel, Aaron, Sarah, Naomi, Shira, and Devorah, for being such delight-

ful people, and the inspiration for my efforts.
Stephen J. Chapman

Contents

Introduction to MATLAB

l.
l.
l.

W N -

1.4
1.5

1.6

The Advantages of MATLAB |
Disadvantages of MATLAB 3

The MATLAB Environment 3

1.3.1 The MATLAB Desktop 4

1.3.2 The Command Window 4

1.3.3 The Command History Window 7
1.34 The LaunchPad 7

1.3.5 The Edit/Debug Window 8

1.3.6 Figure Windows 9

1.3.7 The MATLAB Workspace 10
1.3.8 The Workspace Browser 11

1.3.9 Getting Help 13

1.3.10 A Few Important Commands 14
1.3.11 The MATLAB Search Path 15
Using MATLAB as a Srcratchpad 16
Summary 18

1.5.1 MATLAB Summary 19
Exercises 19

vi | Contents

2 MATLAB Basics

21

2.1
2.2

23

24

25
2‘6

2.7
2.8

2.9
2.10

211

2.12
2.13
2.14

2.15

Variables and Arrays 21
Initializing Variables in MATLAB 24
2.2.1 Initializing Variables in Assignment Statements 25
2.2.2 Initializing with Shortcut Expressions 27
2.2.3 Initializing with Built-in Functions 28
2.2.4 Initializing Variables with Keyboard Input 29
Multidimensional Arrays 31
2.3.1 Storing Multidimensional Arrays in Memory 32
2.3.2 Accessing Multidimensional Arrays
with a Single Subscript 32
Subarrays 34
2.4.1 The end Function 34
2.4.2 Using Subarrays on the Left-Hand Side
of an Assignment Statement 35
2.4.3 Assigning a Scalar to a Subarray 36
Special Values 37
Displaying Output Data 39
2.6.1 Changing the Default Format 39
2.6.2 The disp Function 40
2.6.3 Formatted Output with the fprintf Function 40
Data Files 42
Scalar and Array Operations 44
2.8.1 Scalar Operations 45
2.8.2 Array and Matrix Operations 45
Hierarchy of Operations 48
Built-in MATLAB Functions 51
2.10.1 Optional Results 51
2.10.2 Using MATLAB Functions with Array Inputs 52
2.10.3 Common MATLAB Functions 52
introduction to Plotting 52
2.11.1 Using Simple xy Plots 54
2.11.2 Printing a Plot 55
2.11.3 Multiple Plots 56
2.11.4 Line Color, Line Style, Marker Style, and Legends 56
2.11.5 Logarithmic Scales 58
Examples 59
Debugging MATLAB Programs 67
Summary 69
2.14.1 Summary of Good Programming Practice 69
2.142 MATLAB Summary 70
Exercises 73

D

Contents | wii

3 Branching Statements and Program Design 8i

3.1 Introduction to Top-Down Design Techniques 81
3.2 Use of Pseudocode 86
3.3 Relational and Logical Operators 87
3.3.1 Relational Operators 87
3.3.2 A Caution about the == and ~= Operators 89
3.3.3 Logic Operators 90
3.34 Logical Functions 92
3.4 Branches 9%4
34.1 The if Construct 94
3.4.2 Examples Using if Constructs 96
3.4.3 Notes Concerning the Use of if Constructs 102
344 The switch Construct 104
3.4.5 The try/catch Construct 106
3.5 Additional Plotting Features 108
3.5.1 Controlling x- and y-axis Plotting Limits 108
3.5.2 Plotting Multiple Plots on the Same Axes 111
3.5.3 Creating Multiple Figures 111
3.5.4 Subplots 112
3.5.5 Enhanced Control of Plotted Lines 114
3.5.6 Enhanced Control of Text Strings 115
3.5.7 Polar Plots 115
3.5.8 Annotating and Saving Plots 123
3.6 More on Debugging MATLAB Programs 125
3.7 Summary 128
3.7.1 Summary of Good Programming Practice 129
3.7.2 MATLAB Summary 129
3.8 Exercises 130

4 Loops 137

4! Thewhile Loop 137
4.2 The for Loop 143
4.2.1 Details of Operation 150
42.2 The break and continue Statements 154
423 Nesting Loops 156
43 Logical Arrays and Vectorization 157
4,3.1 The Significance of Logical Arrays 158
4.3.2 Creating the Equivalent of if/else Constructs
with Logical Arrays 161

viii | Contents

4.4
4.5

4.6

Additional Examples 163

Summary 178

4.5.1 Summary of Good Programming Practice 178
4.5.2 MATLAB Summary 179

Exercises 179

5 User-Defined Functions 187
5.1 Introduction to MATLAB Functions 189
5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme 194
5.3 Optional Arguments 204
5.4 Sharing Data Using Global Memory 209
5.5 Preserving Data Between Calls to a Function 217
5.6 Function Functions 222
5.7 Subfunctions and Private Functions 225
5.8 Summary 227
5.8.1 Summary of Good Programming Practice 228
5.8.2 MATLAB Summary 229
5.9 Exercises 229
6 Complex Data, Character Data,
241

and Additional Plot Types

6.1

Complex Data 241

6.1.1 Complex Variables 243

6.1.2 Using Complex Numbers with Relational Operators 244
6.1.3 Complex Functions 244

6.1.4 Plotting Complex Data 248

String Functions 252

6.2.1 String Conversion Functions 252

6.2.2 Creating Two-Dimensional Character Arrays 252
6.2.3 Concatenating Strings 253

6.2.4 Comparing Strings 254

6.2.5 Searching/Replacing Characters within a String 256
6.2.6 Uppercase and Lowercase Conversion 257

6.2.7 Numeric-to-String Conversions 258

6.2.8 String-to-Numeric Conversions 259

6.2.9 Summary 260

Contents ix

6.3 Muitidimensional Arrays 266
6.4 Additional Two-Dimensional Plots 268
6.4.1 Additional Types of Two-Dimensional Plots 268
6.4.2 Plotting Functions 273
6.4.3 Histograms 274
6.5 Three-Dimensional Plots 276
6.5.1 Three-Dimensional Line Plots 276
6.5.2 Three-Dimensional Surface, Mesh, and Contour Plots 273
6.6 Summary 281
6.6.1 Summary of Good Programming Practice 281
6.6.2 MATLAB Summary 282
6.7 Exercises 283

71 Sparse Arrays, Cell Arrays, and Structures 287

7.1 Sparse Arrays 287
7.1.1 The sparse Data Type 289
7.2 Cell Arrays 294
7.2.1 Creating Cell Arrays 296
7.2.2 Using Braces {} as Cell Constructors 297
7.2.3 Viewing the Contents of Cell Arrays 298
7.2.4 Extending Cell Arrays 298
7.2.5 Deleting Cells in Arrays 300
7.2.6 Using Data in Cell Arrays 300
7.2.7 Cell Arrays of Strings 301
7.2.8 The Significance of Cell Arrays 302
7.2.9 Summary of cell Array Functions 305
7.3 Structure Arrays 306
7.3.1 Creating Structures 306
7.3.2 Adding Fields to Structures 308
7.3.3 Removing Fields from Structures 309
7.3.4 Using Data in Structure Arrays 310
7.3.5 The getfield and setfield Functions 311
7.3.6 Using the size Function with Structure Arrays 312
7.3.7 Nesting Structure Arrays 312
7.3.8 Summary of structure Functions 313
7.4 Summary 314
7.4.1 Summary of Good Programming Practice 315
7.42 MATLAB Summary 315
7.5 Exercises 316

x | Contents

8 Input/Output Functions

319

8.1
8.2
8.3
8.4

8.5

8.6

8.7
8.8

8.9
8.10

The textread Function 319

More about the 1oad and save Commands 321
An Introduction to MATLAB File Processing 323
File Opening and Closing 325

8.4.1 The fopen Function 325

8.4.2 The fclose Function 328

Binary /O Functions 328

8.5.1 The fwrite Function 328

8.5.2 The fread Function 329

Formatted /O Functions 332

8.6.1 The fprint Function 332

8.6.2 Understanding Format Conversion Specifiers 334
8.6.3 How Format Strings Are Used 336

8.6.4 The fscanf Function 339

8.6.5 The fgetl Function 341

8.6.6 The fgets Function 341

Comparing Formatted and Binary 1/O Functions 342
File Positioning and Status Functions 347

8.8.1 The exist Function 347

8.8.2 The ferror Function 349

8.8.3 The feof Function 350

8.8.4 The ftrell Function 350

8.8.5 The frewind Function 350

8.8.6 The fseek Function 350

Function uiimport 356

Summary 358

8.10.1 Summary of Good Programming Practice 359
8.10.2 MATLAB Summary 359

Exercises 360

9 Handle Graphics

363

9.1
9.2
9.3

9.4
9.5
9.6

The MATLAB Graphics System 363

Object Handles 365

Examining and Changing Object Properties 365
9.3.1 Changing Object Properties at Creation Time 365
9.3.2 Changing Object Properties after Creation Time 366
Using set to List Possible Property Values 372
User-Defined Date 374

Finding Objects 375

