UMLY i A R il M

|

g TR

- R

BUILDING SCALABLE

DATABASE APPLICATIONS
OBJECT-ORIENTED DESIGN,

ARCHITECTURES, AND IMPLEMENTATIONS

g

4 & K B

www.sciencep.com

OBJECT TECHNOLOGY

BOOCH
JACOBSON

s3d3s

RUMBAUGH

e SERIES EDITORS

ADDISON-WESLEY

3

UM 5B E xR %S e

ME AT REL

=¥

EJI]

12

Building Scalable Database Applications

Object-Oriented Design, Architectures, and Implementations

- (3£) Peter M. Heinckiens 9w

4 5 & K &

b

A

E=F: 01-2003-7659 S
moEE AN

A BRMBIER AT ER RSB T Web IARIFNG A RIS 1. A BEANDTH
FAR SRR B R ROT L R R RO RT 3.
AFAHEIRERE MG RITARGENSE,

English reprint copyright©2003 by Science Press and Pearson Education Asia Limited.

Original English language title: Building Scalable Database Applications: Object-Oriented Design, Architectures,
and Implementations, 1* Edition by Peter M. Heinckiens, Copyright©1998

ISBN 0-201-31013-9

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Longman, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
PR e ANRSERES R (AP EEE. &R RT B MG E G SO MERT.
AP HNEH Pearson Education(H £ 3 H AR ER) BV A% . THEEARHE.
B+ 7E k% B (CIP) T
P2 a4 R ¥ 48 FE N Al 72 ¥ —Building Scalable Database Applications:Object-Oriented
Design, Architectures,and Implementations/ () Peter M. Heinckiens % & —% EnAd —1bgl: Rl
HRRAE, 2004

(UML 5HR MR RN
ISBN 7-03-012493-6

[#... IIH.. NLEEERG—REFRF—%X V.TP311.13

o [i Ac el 50 CIP B T (2003) 38 103054 5

A RBE. BRE/ 1THE: 4T L
Tt BAER/HEHE AFALFEEHE
A% % B » L
E1A-8 %% 15 & 100

ERE F:100717
http: // www . sciencep.com

4 ®# 7 ER
FREmML R B HFE AR

*

20041 AE — W FFA: 787X960 1/16
2004 4 | A% —IKENRY Eiek: 21
Eng: 1—3 000 FH: 399000

Ef: 36.00 7T
(SRR S, RAAFRBE)

FEEIS

FEE T BN R R R B MO RS T RE . H A ERERKY K. &
EITFRE R B RORERE, BORME 2, AR E PR S
EK. 20 tHe2 60 F(HERAFEILE ANTERE IR B B TR T H R RGTT K
LB, FRIEGFFEFEM 60 EFREZXLIBETTEMNF LEHRIFL, SEH 70
EREMB T T 80 ERVA LR R Rk, HRE X ROFFR .

T 1) X R B T 2 7 B R AL T R VBRI LR e R PR T BRI A B0 R R
Mk, EidfsdE, #H3E, 40K, HESEAXBARNBLENSH, RIFREITRELHE
HhE MRS T HRR, ARAEE FBH T RGN, EMARERERT
BFRHES ., UENERGEF RO EMMBIEM, BB T ERXT RISt

20 e 80 AR 90 ALK, S BT LR X RS TRITTE. B,
Booch, Coad/Yourdon . OMT 1 Jacobson 277 -85 T 1 M X SRR T & R A0,
KR ESHFZE NSRS KRR AR MR, BIEESHERE, &BRER ENFRE
AR, Eid 90 EARRITERIEZ BRSEE, AMIZHAMREARMTERARLE
SRy RS, VEHRERBREE, Kk BFEEHTMeAEE;: AR
BHFRROERKMER, FHFH SRR SME. EXFMELT, L—FRES
(UML)F 90 FEAHBARLZ T4

UML BB AR I SO0 E M 3T R K 8% %K G Booch, J. Rumbaugh # 1.
Jacobson K& H1AYE. MATMEF BRI T KEA FMEREEE, £ UML RIBES
IR FB T MR —F 7k, JFRRE T RIFAF AT Bt — 2T R
HHLE . UML RE & MR SR G R TR S, SRMRRRE,
B BUEEIRE . 1997 4 11 UML B OMG AGUER KA AR REIE
= H7EREVE 9L R R B N S ERE S PRI

UML 7EiEEHNE X HE U7 Emdu i T KB TAE. LA 4 Ao o F T 1) Xof 52 7 9
PR R L B B R SO S, T FERRA HI RS, R
JE FX AR AR T4 . UML M —MEEEF EA R, BRAES¥Ehe—8
ﬁ*%%lcE%EEMﬁgimﬁaﬁzﬁﬁﬁzﬁ%,@?Eﬁﬁ@%ﬁ%%ﬁﬂ
B H R R B T B JOHs O .

MUMLME%M$ﬁ%,ﬁ%ﬂ?ﬁ%ﬂ#ﬂﬁmEMHOMG%%Mﬂﬁﬁﬂ
Mi%mE%LTi%L%Iﬂﬁ&mﬂ&,ﬁ?%ﬁﬂ%@zmmﬁozﬁfﬁﬂm

ii MRy R IR A T A2

TRIFAGUEM SRR R G, WIS ERE . B SRMEAS . ARSI R
. mhRAES. RERES. TUFEEREE T E VAR R L REEE
BB A W EE BN AU R THE NI, ol IR R, il andg
e N 2003 1 N | A | e R VA Er ot A REE ok I

fE UML BES2& A LA A . BB IE T RT— DA R BB IR, HIPRF A
Al UML2.0 WA 2%t UML A9 — W B Rkt # ok i UML F 1) #5355 5AL
AT . KSR e, MBI TR LR B EH H %

ANBUGE T SHE R S E AR UML A KT LA T, R T | % S8R e
% R FEH LA UML MBTRIBISanaAs . JErpub ROtk if) 6 S B Ie e 15 S f
SR TLAS . (XS R R BERHE T E R R EARE . ¥ RSEOT.
AAKTE . BASET . B PR LA e A 2R G5 4 2530 LA R T i % R AR U AR T
BAERO S H e, O UML BHATRB S @A) SEN 7 R M RFRIB. T
BB SR B AR R ik SRR (FRGURREREL) 4R T RN RGO
RS S R R MR SHR s (UML i it 4l) T 25 ML £ T 1)
ﬁ%ﬁ%ﬂﬁ%@ﬁ;@ML%%%%)%%TUML%%ﬁ*ﬁﬂﬁ@ﬁ?.M%X\
FREHBEIR %S AR T UML 1R AR S

W % UML 754558 SURiis AR A X B LA . (UML SERF RGEIFR) 48 Ttk
M%%%EN%%NUMLﬁﬁ#@%&*;<ﬁUMLW@W®@ﬁE?>W%TE
FI UML 45 Web o7 FERAE B i i BB R 5 rs; (BRI R R, #R, H
@51ﬂ>ﬁ%T%UML@%?@ﬁﬁ%%%ﬁ%ﬁ%@%ﬁ%ﬁ&ﬁTﬁ;<ﬂ%\
Haf . AESL5 UML BUR) 433 T A0 Al UML X115 3 5 B B R— 9 - AR
REAERH 2R, (UML 15 Visual Basic BAREFEFFE) EEIHET M UML HEE]
Visual Basic BofF MBS Mg 73, (XML PR UML 88) BH# T 40faH XML
Eﬂmu%é,MEﬁﬁﬁwwmmﬁ?,iﬂﬁ%%mmmm%&;<m@ﬂﬁﬁ
BUREN R M TR A A AR PR G 1 U R R AR P SRR
(UML 5347404 2500 57 AR AR B)% UML 73817 2 A LW RGEH & N
WT%@W#%%ﬁ%,ﬁﬁﬁﬁmN%ﬁ%ﬁ&%&%%ﬁﬁ%ﬁ@ﬁTﬁﬁwﬁ%
U, (UML ‘5 J2BE A RIRERETF R) RANH 1A J2EE R A R T AR
. UML SREE AR R R B IF R & B BT

AEE M RAERAROEFAS: (COM HF L&) A (ATL BERNE) . &
AT BN S AR R A ——COM il ATL BR BB BTSRRI RE.

¥4 — A (Executable UML AN) . A AR T AT UML MBS S
FESER . AR R T R R P0G A S E RS AT e CRARB IR
() — R AR

A i

B2, WERHTREREAS TR SRR e RNk SRR, B

Fif L X LA SR R SR AR R | BT RAR RO TIRARIN A, REENFC AW K
VTR ATLAL, - AAMR R

HETIL, PR RO AN RIS I A B A e A 1, (ORI B T Ao

LFEXFHENER FFR B

Foreword

A fundamental trend in computing is the evolution of applications from monolithic codes
to component-based systems. Evidence of increasing software modularization and distri-
bution is clear. The typical design center for application software has evolved from a huge
mainframe orientation to a two-tier, client/server perspective, in which user-interface logic
resides on desktop clients and the balance of the application executes on remote servers.
The server commonly supports large, well-established databases and is accessed by a vari-
ety of applications. This two-tier, client/server model is evolving further to a three-tier
model, with legacy databases remaining on centrally administered servers and application
logic executed by mid-tier deparimental servers. The next step is even more completely
distributed applications, We are creating a new understanding of what an application is.
That is, an application becomes a collect of well-modularized applets that interact in a net-
work computing environment to accomplish the work of the application.

Designing client/server and distributed applications is a complex, challenging propo-
sition. There are so many variables to consider and variants to analyze. If you've been
faced with this challenge, you may have found it difficult to leverage the experience and
expertise of others in the area, partly because so little has been published. This book
should help to make your job easier because it shares real experience and expertise on how
to design client/server applications.

Coupled with the trend toward modularization and distribution is that of more often
using object technologies for designing and implementing applications. These two trends
are quite synergistic and complementary; each reinforces the other. Object technology is
well-suited for distributed environments, and distributed applications are well-served by
object technology.

“Object-oriented” has become one of the more popular adjectives of this period in
computing. At today’s computer-industry trade shows, an amazing percentage of products

xi

xii

Foreword

are boldly labeled “object-oriented,” to the point that the term is becoming a bit empty. In
fact, however, object technology is exceptionally important. It encompasses object-oriented
analysis and design techniques and methods, object programming languages, object data-
base management systems, object request brokers and services, and so on. This book
explains an approach for building robust applications by leveraging a stable and reusable
business model that is developed using principles of object modeling.

The approach of Peter Heinckiens advocates separating not only an application’s user-
interface from its logic, but also separating the application’s logic and its data persistence
(or database) aspects. This additional cleavage plane is analogous to the extension of a
two-tier client/server to a three-tier architecture. Not only are the user-interface modules
separated from the application logic, but it also is easy to isolate the persistence mecha-
nism. This approach is especially applicable in situations in which you want to build an
application using an object programming language and want that application to access
data that already resides in a non-object-oriented persistent store, for example, in a rela-
tional database or a conventional file system.

Peter's approach is not entirely new. For some time, others have been designing and
implementing three-tier client/server and distributed applications using object modeling
and object programming languages with relational database management systems. How-
ever, not much of that experience has been captured in the printed word. In contrast,
Peter’s book is rich with code examples that will help you understand exactly how to fol-
low his footsteps in order to get a working system.

Building Scalable Database Applications discusses a variety of topics of importance
relative to object-oriented application design. Here’s a partial list of what it does:

» Presents a persistence architecture that allows for clear separation of object-
oriented business models and relational database models.

« Shows how to abstract the details of database concepts and terminology so that
you can concentrate on the fundamentals of persistence.

« Explains how to approach the design of reusable business objects.

o Shows how to approach the design of systems that are open and extensible.

« Emphasizes the pragmatic aspects of designing applications.

« Focuses on leveraging relational databases into object-oriented programming
environments.

» Not only offers theory, but also shows how to apply that theory in practice.

Although I don’t necessarily agree with everything Peter says in this book, find it
interesting and thought-provoking. Itis definitely a step forward in the purveyance of prac-
tical information about how to combine notions of object-oriented programming and rela-
tional database storage. It should prove to be a valuable resource for many designers and
implementers of modem applications.

Mary E.S. Loomis, PhD
Palo Alto, California

Preface

Perhaps the biggest problem the software industry has been coping with is the inability to
travel in time, both forward and backward. Forward, because it would be nice to know in
advance what our system specifications will end up looking like. Backward, because then
we could change the mistakes we made and now have to live with. Thus our present is dic-
tated by our past, and in its turn, our present dictates our future. So, we had better make sure
that the choices we make today are well considered, or we might regret them for years to
come. However, since we cannot predict the future, we must try to make our choices in such
a way that our options stay open.

This situation is even more prevalent today. Because of the rapid technological
advances the software industry faces, continually bigger demands are made by customers
of software products. Those same customers are also experts in adding or changing “some
very minor points” to the program requirements that often result in a programmer having
to rewrite almost the entire program. This problem is often the cause of frustration
between developers and customers. Developers get frustrated because the customer's mod-
ifications come so late in the project that major reprogramming is needed. Customers get
frustrated because they had expected a more flexible collaboration.

Database Applications

The observation in the previous section particularly holds for many of today’s manage-
ment information system (MIS) applications. Most of these applications have very long
life cycles, often spanning several technological waves in the fields of both programming
and database technologies, and they often require extensions or meodifications. It is impos-
sible to rewrite the software every time the technology changes. However, at the same

xili

xiv

Preface

time, customers want to use the latest technological evolutions (just think of the World
Wide Web, for example).

Traditionally, database applications were designed using programming languages
such as COBOL or, in the best case, C. The main objections to these approaches have been
that writing an application takes far too long and that afterward it contains too many bugs
and is not sufficiently maintainable or portable. The portability issue is very important.
Often, the (potential) customer already possesses a database system and wants your appli-
cation to work on it. If that system differs from the one that your library of reusable rou-
tines was developed for, you might have a problem. An even more frustrating situation
occurs when you demonstrate one of your applications to potential customers, and they
agree that it is just what they have been waiting for all their life—if only it had not been
written for a different database system than the one that they are currently using.

To increase software development productivity, Rapid Application Development
(RAD) has become very popular and has given explosive birth to fourth-generation lan-
guage (4GL) systems. However, being able to develop applications fast is one thing. How
do we cope with the entire software life cycle, particularly maintenance and extensibility?
Recent study has shown that in several companies, more than 93% of all software efforts
g0 to program maintenance. And this figure is increasing.

The current silver bullet to conquer the software werewolf {Brooks87] is said to be
object orientation. As a result, most RAD products got an additional label stuck on them:
object-oriented. But what does object orientation really mean? Does it mean we should be
able to draw or inherit fancy user interfaces? Does it mean we have to program in Java,
Smalltalk, or C++? Or does it perhaps mean that we should migrate to an object-oriented
database system?

Database technology, too, is an area in which rapid advances are being made. As a
result, we are stuck with a mixture of several technologies: network databases, relational
databases, flat-file systems, object-oriented databases, and so on. How do we integrate
these? If we need to buy a new system, which technology do we choose? What if this
choice turns out to be wrong? Or what if, in a couple of years, we have to migrate to a new
technology?

The database is playing an increasingly important role in software design. However,
what is a database application exactly? Does the database really play such an all-important
role in these applications that it justifies letting it dominate the entire software approach?

All of these questions, and plenty more, are being asked every day by application devel-
opers. These developers need a database in which to store their data, but they are finding it
increasingly difficult to present a suitable solution to their customers’ ever-growing software
demands.

To survive the explosive technological evolution in the software industry, we need an
entirely new view of the concept of databases or, rather, of persistence as a whole. The con-
cept of persistence has to be abstracted from the actual persistence technology.

Preface

XV

What to Expect from This Book

In this book, I sketch a picture of the issues concerning database applications and how to
handle them in an object-oriented way. The concepts and views introduced here are illus-
trated by the use of a persistence architecture called Scoop, short for scalable object-oriented
persistence. 1 describe the fundamentals of the Scoop architecture and use it to explain
how to develop database applications using object-oriented techniques.

The main objective of this book is to present the concept of object storage from an
application developer’s point of view. Somehow we have to manipulate persistent data.
How do we do this, and, more important, how do we do this without having to throw out
the tools we already possess?

Various aspects of software design are covered, including

» Determining the position of the database

Developing an object-oriented view on the database

« Designing reusable business components

"« Modeling and implementing associations

« Separating the user interface from the business model

» Designing database applications in such a way that maximum reuse and openness
are achieved

I emphasize how to write software that conforms to a three-tier, client/server architecture.
That is, I focus on how to obtain maximum separation and independence between the user
interface, the application logic, and the storage.

A case study of a real-world application illustrates ‘the concepts and techniques pre-
sented in this book. This study is interesting in that it describes an application that has
been implemented in multiple versions. One version was implemented using the Scoop
architecture, while others were developed using a number of 4GLs. This case study allows
you to compare the object-oriented approach to the data-driven approach offered by most
4GL systems.

intended Audience

Many application developers are committed to relational database management systems
(RDBMSs). Although they may be interested in object orientation, they are often hesitant
(or unable) to throw out existing relational or legacy products. This book shows how they
can continue using their existing products and still benefit from an object-oriented approach.
More generally, this book is of importance 1o anyone interested in object-oriented design
and is unwilling to be committed t0 a specific database system. On the contrary, by using
the techniques described here developers will be able to run their applications on a wide
range of low-end and high-end database management systems (DBMSs).

xvi

Preface

Although some parts of this book are quite technical, several chapters should also be
useful to managers. They will provide managers responsible for directing the information
systems strategy of a company with some insights in and background about issues relevant
to “modern client/server software.” Especially of interest to them should be Chapters 1, 2,
3,4, 11,12, and 13. '

Another target group is the designers who need access to database systems for appli-
cations that are not really database-related. This book will show them how they can elimi-
nate most of the details concerned with databases and thus be able to focus on the
fundamental parts of their programs.

Although the examples are given in C++ and the reader is expected to have some
familiarity reading C++ code, the reader does not have to be an expert C++ programmer to
benefit from the book. Knowledge of object-orientation is helpful; however, the reader
need not be an object-oriented specialist. All that is required to benefit from the book is an
open mind.

Feedback

Comments, criticisms, and suggestions about this book are greatly appreciated. They can
be sent by e-mail to Peter Heinckiens at Peter.fleinckiens@rug.ac.be.

Acknowledgments

Many of the ideas proposed in this book originated from the experience I obtained working
with Professor Ghislain Hoffman. It was he who, many years ago, sparked my enthusiasm
for object orientation, and he is one of the first people I met who seemed to fully understand
this concept and its implications for today’s software systems. Working with him not only
provided me with an invaluable experience, but also taught me a necessary lesson in prag-
matism.

This book has benefited substantially from many fruitful discussions I had with Philippe
Van Damme, Herman Tromp, and Johan Hoffman. They served as sounding boards for my
often only partially formed ideas, and they meticulously reviewed my draft manuscript. I am
particularly grateful to Philippe, who not only reviewed my final draft, but who read and
reread my manuscript from its early days. His comments led to often heated discussions, but
they were of immense value and resulted in many improvements to this book.

The detailed reviews by Rick Cattell, Margaret Ellis, John Lakos, and Mary Loomis are
greatly appreciated. Margaret and John not only went into the technical aspects of my
manuscript, but also did a very thorough job of polishing my English. Mary and Rick pro-
vided some very pertinent suggestions. Mary’s offer to write my foreword was a big encour-
agement for me, not only because of my respect for her professionally, but especially
because of my respect for her as a person.

I received helpful comments and support from many of my friends and colleagues. I
particularly want to thank Bob Adams, Peter Amold, Kris Carron, Daniel Chang, Patrick
Delbeke, Hendrik Devos, Martin Hedley, Michael Hoffman, Rony Lanssiers, Geert
Premereur, Herman Steyaert, Misty Taylor, Bart Van den Berghe, Bart Van Renterghem, and
Richard Wiener.

[want to give special thanks to my family—Michelle Van Hollebeke, Marc Heinckiens,
Jeannine Fiers, Masha Heinckiens, and Mo Khalfa—for their love, support, and understanding.

xvil

xviit

Acknowledgments

They not only supported me morally, but also helped with another major task I undertook
during the writing of this book: renovating a house. Without them, I would not have been
able to finish both of these jobs successfully.

Finally, I want to thank Katie Duffy, Mike Hendrickson, Marina Lang, and Marilyn
Rash at Addison Wesley Longman and Laura Michaels of Montview Publications for their
very professional and pleasant way of working with me. Katie, Mike, and Marina have been
very supportive and helpful throughout this whole project. Marilyn made sure that I
(almost) made all my deadlines, and Laura did an excellent job of copyediting.

About the Author

Peter M. Heinckiens holds the Belgian equivalent of an M.S. degree in electrical engineer-
ing. He works for the Information Technology Department of the University of Ghent,
where he is responsible for coordinating the strategic planning and deployment of software
technology throughout the university's administrative section. His function at the University
puts him in the unique position of being able to do research while also confronting the real
issues and problems that business faces today.

In addition, he often teaches and consults for industry. As a consultant, he has been
involved in introducing object-oriented techniques in large-scale projects. Many of these
projects were designed using the techniques described in this book. He is also a frequent
speaker at international conferences and is a contributor to several technical and scientific
magazines.

xix

Contents

Part One

Foreword xi

Preface xiii
Acknowledgments xvii
About the Author xix

An Object-Oriented View on Persistence

Chapter 1 A New Generation of Software 3

1.1 From Data to Information 3

1.2 Improving Software Quality 4
1.3 Databases Everywhere 4

1.4 To Have and to Hold h]

1.5 Concentrating on the Essence 5
1.6 The Importance of Scalability 6
1.7 Application Program Interfaces 7
1.8 The Road to Follow 7

Chapter 2 The Database Community Today

2.1 Walking among Dinosaurs 9

2.2 Database Usage 10

2.3 Database Users 10

2.4 Designing Database Applications 11
2.5 Relational Databases 12

2.6 Client/Server Systems 15

2.7 Distributed Software 18

9

vi

Contents

Chapter 3

2.8 Problems with Traditional Systems 19
2.9 4GL.: The Solution? 20

2.10 Object-Oriented Databases 21

2.11 Preserving Openness 23

2.12 Summary 24

An Object-Oriented View on Database
Applications 25

3.1 Data-Driven Software Design 25
3.2 Supporting Multiple Applications 28
3.3 Object-Oriented Software Design 29
3.4 The Object Model 30
3.5 Example: Student Administration 31
3.6 Business Models and Supporting Multiple
Applications 34
3.7 C++. Java, or Smalitalk: The Ultimate Answer? 35
3.8 Building Reusable Software 38
3.9 Toward Open Client/Server Applications 40
3.10 Object Orientation and Client/ Server Design 40
3.11 User Interfaces 40
3.12 Analogy between User Interfaces and Databases 41
3.13 Object-Oriented or Relational? 43)
3.14 Persistence from a Different Angle 44
3.15 Persistence and Separation of Concerns 44
3.16 Safety Issues 46
3.17 Summary 46

Part Two An Architecture for Object Persistence 47

Chapter 4

Chapter 5

Making Objects Persistent 49

4.1 Introduction 49
4.2 Basic Requirements of a Persistence Framework 50
4.3 Obtaining Scalability 50
4.4 Interfacing with a Relational World: Problems
to Conquer 51
4.5 Abstracting the Database 57
4.6 An Architecture for Object Persistence 58
4.7 Summary 60

Abstracting the Database 61

5.1 A Persistent Container Class 61
5.2 Basic Functionality of PSet 6l
5.3 Implementing the Persistence Architecture 63

