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Foreword

A fundamental trend in computing is the evolution of applications from monolithic codes
to component-based systems. Evidence of increasing software modularization and distri-
bution is clear. The typical design center for application software has evolved from a huge
mainframe orientation to a two-tier, client/server perspective, in which user-interface logic
resides on desktop clients and the balance of the application executes on remote servers.
The server commonly supports large, well-established databases and is accessed by a vari-
ety of applications. This two-tier, client/server model is evolving further to a three-tier
model, with legacy databases remaining on centrally administered servers and application
logic executed by mid-tier deparimental servers. The next step is even more completely
distributed applications, We are creating a new understanding of what an application is.
That is, an application becomes a collect of well-modularized applets that interact in a net-
work computing environment to accomplish the work of the application.

Designing client/server and distributed applications is a complex, challenging propo-
sition. There are so many variables to consider and variants to analyze. If you've been
faced with this challenge, you may have found it difficult to leverage the experience and
expertise of others in the area, partly because so little has been published. This book
should help to make your job easier because it shares real experience and expertise on how
to design client/server applications.

Coupled with the trend toward modularization and distribution is that of more often
using object technologies for designing and implementing applications. These two trends
are quite synergistic and complementary; each reinforces the other. Object technology is
well-suited for distributed environments, and distributed applications are well-served by
object technology.

“Object-oriented” has become one of the more popular adjectives of this period in
computing. At today’s computer-industry trade shows, an amazing percentage of products
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Foreword

are boldly labeled “object-oriented,” to the point that the term is becoming a bit empty. In
fact, however, object technology is exceptionally important. It encompasses object-oriented
analysis and design techniques and methods, object programming languages, object data-
base management systems, object request brokers and services, and so on. This book
explains an approach for building robust applications by leveraging a stable and reusable
business model that is developed using principles of object modeling.

The approach of Peter Heinckiens advocates separating not only an application’s user-
interface from its logic, but also separating the application’s logic and its data persistence
(or database) aspects. This additional cleavage plane is analogous to the extension of a
two-tier client/server to a three-tier architecture. Not only are the user-interface modules
separated from the application logic, but it also is easy to isolate the persistence mecha-
nism. This approach is especially applicable in situations in which you want to build an
application using an object programming language and want that application to access
data that already resides in a non-object-oriented persistent store, for example, in a rela-
tional database or a conventional file system.

Peter's approach is not entirely new. For some time, others have been designing and
implementing three-tier client/server and distributed applications using object modeling
and object programming languages with relational database management systems. How-
ever, not much of that experience has been captured in the printed word. In contrast,
Peter’s book is rich with code examples that will help you understand exactly how to fol-
low his footsteps in order to get a working system.

Building Scalable Database Applications discusses a variety of topics of importance
relative to object-oriented application design. Here’s a partial list of what it does:

» Presents a persistence architecture that allows for clear separation of object-
oriented business models and relational database models.

« Shows how to abstract the details of database concepts and terminology so that
you can concentrate on the fundamentals of persistence.

« Explains how to approach the design of reusable business objects.

o Shows how to approach the design of systems that are open and extensible.

« Emphasizes the pragmatic aspects of designing applications.

« Focuses on leveraging relational databases into object-oriented programming
environments.

» Not only offers theory, but also shows how to apply that theory in practice.

Although I don’t necessarily agree with everything Peter says in this book, find it
interesting and thought-provoking. Itis definitely a step forward in the purveyance of prac-
tical information about how to combine notions of object-oriented programming and rela-
tional database storage. It should prove to be a valuable resource for many designers and
implementers of modem applications.

Mary E.S. Loomis, PhD
Palo Alto, California



Preface

Perhaps the biggest problem the software industry has been coping with is the inability to
travel in time, both forward and backward. Forward, because it would be nice to know in
advance what our system specifications will end up looking like. Backward, because then
we could change the mistakes we made and now have to live with. Thus our present is dic-
tated by our past, and in its turn, our present dictates our future. So, we had better make sure
that the choices we make today are well considered, or we might regret them for years to
come. However, since we cannot predict the future, we must try to make our choices in such
a way that our options stay open.

This situation is even more prevalent today. Because of the rapid technological
advances the software industry faces, continually bigger demands are made by customers
of software products. Those same customers are also experts in adding or changing “some
very minor points” to the program requirements that often result in a programmer having
to rewrite almost the entire program. This problem is often the cause of frustration
between developers and customers. Developers get frustrated because the customer's mod-
ifications come so late in the project that major reprogramming is needed. Customers get
frustrated because they had expected a more flexible collaboration.

Database Applications

The observation in the previous section particularly holds for many of today’s manage-
ment information system (MIS) applications. Most of these applications have very long
life cycles, often spanning several technological waves in the fields of both programming
and database technologies, and they often require extensions or meodifications. It is impos-
sible to rewrite the software every time the technology changes. However, at the same
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time, customers want to use the latest technological evolutions (just think of the World
Wide Web, for example).

Traditionally, database applications were designed using programming languages
such as COBOL or, in the best case, C. The main objections to these approaches have been
that writing an application takes far too long and that afterward it contains too many bugs
and is not sufficiently maintainable or portable. The portability issue is very important.
Often, the (potential) customer already possesses a database system and wants your appli-
cation to work on it. If that system differs from the one that your library of reusable rou-
tines was developed for, you might have a problem. An even more frustrating situation
occurs when you demonstrate one of your applications to potential customers, and they
agree that it is just what they have been waiting for all their life—if only it had not been
written for a different database system than the one that they are currently using.

To increase software development productivity, Rapid Application Development
(RAD) has become very popular and has given explosive birth to fourth-generation lan-
guage (4GL) systems. However, being able to develop applications fast is one thing. How
do we cope with the entire software life cycle, particularly maintenance and extensibility?
Recent study has shown that in several companies, more than 93% of all software efforts
g0 to program maintenance. And this figure is increasing.

The current silver bullet to conquer the software werewolf {Brooks87] is said to be
object orientation. As a result, most RAD products got an additional label stuck on them:
object-oriented. But what does object orientation really mean? Does it mean we should be
able to draw or inherit fancy user interfaces? Does it mean we have to program in Java,
Smalltalk, or C++? Or does it perhaps mean that we should migrate to an object-oriented
database system?

Database technology, too, is an area in which rapid advances are being made. As a
result, we are stuck with a mixture of several technologies: network databases, relational
databases, flat-file systems, object-oriented databases, and so on. How do we integrate
these? If we need to buy a new system, which technology do we choose? What if this
choice turns out to be wrong? Or what if, in a couple of years, we have to migrate to a new
technology?

The database is playing an increasingly important role in software design. However,
what is a database application exactly? Does the database really play such an all-important
role in these applications that it justifies letting it dominate the entire software approach?

All of these questions, and plenty more, are being asked every day by application devel-
opers. These developers need a database in which to store their data, but they are finding it
increasingly difficult to present a suitable solution to their customers’ ever-growing software
demands.

To survive the explosive technological evolution in the software industry, we need an
entirely new view of the concept of databases or, rather, of persistence as a whole. The con-
cept of persistence has to be abstracted from the actual persistence technology.
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XV

What to Expect from This Book

In this book, I sketch a picture of the issues concerning database applications and how to
handle them in an object-oriented way. The concepts and views introduced here are illus-
trated by the use of a persistence architecture called Scoop, short for scalable object-oriented
persistence. 1 describe the fundamentals of the Scoop architecture and use it to explain
how to develop database applications using object-oriented techniques.

The main objective of this book is to present the concept of object storage from an
application developer’s point of view. Somehow we have to manipulate persistent data.
How do we do this, and, more important, how do we do this without having to throw out
the tools we already possess?

Various aspects of software design are covered, including

» Determining the position of the database

Developing an object-oriented view on the database

« Designing reusable business components

"« Modeling and implementing associations

« Separating the user interface from the business model

» Designing database applications in such a way that maximum reuse and openness
are achieved

I emphasize how to write software that conforms to a three-tier, client/server architecture.
That is, I focus on how to obtain maximum separation and independence between the user
interface, the application logic, and the storage.

A case study of a real-world application illustrates ‘the concepts and techniques pre-
sented in this book. This study is interesting in that it describes an application that has
been implemented in multiple versions. One version was implemented using the Scoop
architecture, while others were developed using a number of 4GLs. This case study allows
you to compare the object-oriented approach to the data-driven approach offered by most
4GL systems.

intended Audience

Many application developers are committed to relational database management systems
(RDBMSs). Although they may be interested in object orientation, they are often hesitant
(or unable) to throw out existing relational or legacy products. This book shows how they
can continue using their existing products and still benefit from an object-oriented approach.
More generally, this book is of importance 1o anyone interested in object-oriented design
and is unwilling to be committed t0 a specific database system. On the contrary, by using
the techniques described here developers will be able to run their applications on a wide
range of low-end and high-end database management systems (DBMSs).
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Although some parts of this book are quite technical, several chapters should also be
useful to managers. They will provide managers responsible for directing the information
systems strategy of a company with some insights in and background about issues relevant
to “modern client/server software.” Especially of interest to them should be Chapters 1, 2,
3,4, 11,12, and 13. '

Another target group is the designers who need access to database systems for appli-
cations that are not really database-related. This book will show them how they can elimi-
nate most of the details concerned with databases and thus be able to focus on the
fundamental parts of their programs.

Although the examples are given in C++ and the reader is expected to have some
familiarity reading C++ code, the reader does not have to be an expert C++ programmer to
benefit from the book. Knowledge of object-orientation is helpful; however, the reader
need not be an object-oriented specialist. All that is required to benefit from the book is an
open mind.

Feedback

Comments, criticisms, and suggestions about this book are greatly appreciated. They can
be sent by e-mail to Peter Heinckiens at Peter.fleinckiens@rug.ac.be.
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