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Preface

This book provides a fundamental introduction to numerical analysis suitable for un-
dergraduate students in mathematics, computer science, physical sciences, and engi-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material fitted modularly for either a
single-term course or a year sequence. In short, the book contains enough material so
instructors will be able to select topics appropriate to their needs.

Students of various backgrounds should find numerical methods quite interesting
and useful, and this is kept in mind throughout the book. Thus, there is a wide vari-
ety of examples and problems that help to sharpen one’s skill in both the theory and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximations are
easier to visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms,

Emphasis is placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between theory, error analysis,
and readability. An error analysis for each method is presented in a fashion that is
appropriate for the method at hand, yet does not turn off the reader. A mathematical
derivation for each method is given that uses elementary results and builds the student’s
understanding of calculus. Computer assignments using MATLAB give students an
opportunity to practice their skills at scientific programming.

Shorter numerical exercises can be carried out with a pocket calculator/computer,
and the longer ones can be done using MATLAB subroutines. It is left for the instruc-
tor to guide the students regarding the pedagogical use of numerical computations.
Each instructor can make assignments that are appropriate to the available comput-



ing resources. Experimentation with the MATLAB subroutine libraries is encouraged.
These materials can be used to assist students in the completion of the numerical anal-
ysis component of computer laboratory exercises.

This Third Edition grows out of much polishing of the narrative for the Second
Edition. For example, the QR method has been added to the chapter on Eigenvalues
and Eigenvectors. New to this edition is the explicit use of the software MATLAB.
An appendix gives an introduction to MATLARB syntaXx. Examples have been added
throughout the text with MATLAB and complete MATLAB programs are given in
cach section. An instructor’s disk is available upon request from the publisher.

Previously we took the attitude that any software program that students mastered
would work fine. However, many students entering this course have yet to master a
programming language (computer science students excepted). MATLAB has become
the tool of nearly all engineers and applied mathematicians, and its newest versions
have improved the programming aspects. So we think that students will have an easier
and more productive time in this MATLAB version of our text.
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Preliminaries

Consider the function f(x) = cos(x), its derivative f'(x) = sin(x), and its an-
tiderivative F(x) = sin{x) + C. These formulas were studied in calculus. The former
is used to determine the slope m = f/(x¢) of the curve y = f(x) ata point (xo, f(x0)),
and the latter is used to compute the area under the curve fora < x < b.

The slope at the point (7/2,0)ism = f/(;/2) = 1 and can be used to find the
tangent line at this point (see Figure 1.1(a)):

pem(c Dro=r (@) D xrl

1.0

0.5 1 ¥=cos(x)

0.0 +————1

Figure 1.1 (a) The tangent line to
the curve y = cos(x) at the point
(n/2,0). .

-0.5 -‘




2 CHAP. 1 PRELIMINARIES

)‘-
1.0 1
4
] y = cos(x)
0.5 ]
0.0.ff-'!""1""
] 0.5 1.0
05 1 Figure 1.1 (b) The area under the
) curve y = cos{x) over the interval

[0, m/21.

The area under the curve for 0 < x < m/2 is computed using an integral (see Fig-
ure 1.1(b)):

area = fﬂﬂlz cos(x)dx = F (%) F(0) = sin (%) 0=

These are some of the results that we will need to use from calculus.

Review of Calculus

It is assumed that the reader is familiar with the notation and subject matter covered in
the undergraduate calculus sequence. This should have included the topics of limits,
continuity, differentiation, integration, sequences, and series. Throughout the book we
refer to the following results.

Limits and Continuity

Definition 1.1. Assume that f(x) is defined on a set § of real numbers. Then f is
said to have the limit L at x = x¢, and we write

(D) lim f(x) =L,
X3

if, given any € > 0, there exists a § > O such that, wheneverx € 5,0 < |x x| < &
implies that | f(x) L| < €. When the A-increment notation x = xg + & is used,
equation (1) becomes

) ' lim f(xo+ k) = L. A
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Definition 1.2. Assume that f(x) is defined on a set S of real numbers and let xg € S.
Then f is said to be continuous at x = xg if

3) lim () = f(xo).

The function f is said to be continuous on § if it is continuous at each point x € S.
The notation C"(S) stands for the set of all functions f such that f and its first n
derivatives are continuous on S. When S is an interval, say [a, b], then the notation
C"[a, b] is used. As an example, consider the function f(x) = x*3 on the inter-
val [ 1,1]. Clearly, f(x) and f'(x) = (4/3)x'/? are continuous on [ 1, 1], while
F”(x) = (4/9)x 273 is not continuous at x = 0. A

Definition 1.3. Suppose that {x,}>° | is an infinite sequence. Then the sequence is

said to have the limit L, and we write

(4) lim Xn =1L,
n—co

if, given any € > 0, there exists a positive integer N = N(¢) such that n > N implies
that |x, L| <e. A

When a sequence has a limit, we say that it is a convergent sequence. Another
commonly used notation is “x, — L as n — 00.” Equation (4) is equivalent to

&) lim (x, L)=0.
n—00

Thus we can view the sequence {os,,}f;o:1 = {x, L};’;l as an error sequence. The
following theorem relates the concepts of continuity and convergent sequence.

Theorem 1.1. Assume that f(x) is defined on the set S and x0 € S. The following
statements are equivalent:

(a) The function f is continuous at xg.
(b) If nll)ngo Xp = Xg, then nl_lﬁ)ngo f(xn) = f(x0)-

(6)

Theorem 1.2 (Intermediate Value Theorem). Assume that f € Cla, b] and L is

any number between f(a) and f(b). Then there exists a number ¢, with ¢ € (a, b),
such that f(c) = L.

Example 1.1. The function f(x) = cos(x 1) is continuous over [0, 1}, and the constant
L = 0.8 € {cos(0), cos(1)). The solution to f(x) = 0.8 over [0, 1} is ¢; = 0.356499.
Similarly, f(x) is continuous over {1, 2.5],and L = 0.8 € (cos(2.5), cos(1)). The solution
to f(x) = 0.8 over [1, 2.5] is ¢z = 1.643502. These two cases are shown in Figure 1.2. =
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y=f(x)
1.0

?

0.8
0.6
0.4

0.2 Figure 1.2 The intermediate value
theorem applied to the function

¥ f(x) =cos(x 1) over [0, 1] and

0.0

o=
h
ot
(]
[
U

2 20 25 over the interval [1, 2.5].
Y Gy, flx))
60 -
50 -
L
40 A (avf(a)) y =f(x)
30 - (b, f(b))
20 -
10 1 (%9, f(x5)) Figure 1.3 The extreme value
theorem applied to the function
: : . . . — X f(x)=35+59.5x 66.5x2 + 15x3
0.0 0.5 1.0 15 2.0 2.5 3.0 over the interval [0’ 3]‘

Theorem 1.3 (Extreme Value Theorem for a Continuous Function). -Assume that
f € Cla,b]. Then there exists a lower bound M;, an upper bound M,, and two
numbers x1, x2 € [a, b] such that

(7 My = f(x)) < f(x) < f(x) = M, whenever x € [a, b].
We sometimes express this by writing '

®)  Mi=fG)= min(f(x)} and My=f(x) = max (f(x))

Differentiable Functions

Definition 1.4. Assume that f(x) is defined on an open interval containing xo. Then
f 1s said to be differentiable at xq if

©) lim &) (o)

X—> X0 X X0
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exists. When this limit exists, it is denoted by f’(xo) and is called the derivative of f
at xo. An equivalent way to express this limit is to use the h-increment notation:

. Sfxo+h) f(xo)
a0 o, T

= f'(xp).

A function that has a derivative at each point in a set § is said to be differentiable
on S. Note that, the number m = f’(xg) is the slope of the tangent line to the graph of
the function y = f(x) at the point (xp, f(x0)). A

Theorem 1.4. If f(x) is differentiable at x = xp, then f(x) is continuous at x = xg.

It follows from Theorem 1.3 that, if a function f is differentiable on a closed
interval [a, b], then its extreme values occur at the end points of the interval or at the
critical points (solutions of f ’(x) = 0) in the open interval (a, b).

Example 1.2. The function f(x) = 15x3 66.5x2459.5x +35 is differentiable on [0, 3].
The solutions to f'(x) = 45x2  123x +59.5 = 0 are x; = 0.54955 and xy = 2.40601.
The maximum and minimum values of f on {0, 3] are:

min{ £(0), £(3), f(x1), f(x2)} = min{35, 20, 50.10438, 2.11850} = 2.11850

and

max{ f(0), £ (3), f(x1), f(x2)} = max{35, 20,50.10438,2.11850} = 50.10438. =

Theorem 1.5 (Rolle’s Theorem). Assume that f € C[a, b] andthat f’(x) exists for

allx € (a, b). If f(a) = f(b) = 0, then there exists a number ¢, with ¢ € (a, b), such
that f'(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume that f € C[a, b] and that f'(x)
exists for all x € (a, b). Then there exists a number ¢, with ¢ € (a, b), such that

1 _s@
b a

Geometrically, the Mean Value Theorem says that there is at least one number
¢ € (a, b) such that the slope of the tangent line to the graph of y = f(x) at the point
(¢, f(c)) equals the slope of the secant line through the points (a, f(a)) and (b, f(b)).

(1) fle)=

Example 1.3. The function f(x) = sin(x) is continuous on the closed interval [0.1, 2.1]
and differentiable on the open interval (0.1, 2.1). Thus, by the Mean Value Theorem, there
is a number ¢ spch that

f= @D fOD 0863209 0.099833
=721 o1 T 21 01
The solution to f’(c) = cos(c) = 0.381688 in the interval (0.1, 2.1) is ¢ = 1.179174.

The graphs of f(x), the secant line y = 0.381688x + 0.099833, and the tangent line
y = 0.381688x + 0.474215 are shown in Figure 1.4, , [ |

= 0.381688.




