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Preface

Fourier series and the Fourier transform have been around since the nineteenth
century and many research articles and books (at both the graduate and under-
graduate levels) have been written about these topics. By contrast, the devel-
opment of wavelets has been much more recent. While its origins go back many
decades, the subject of wavelets has become a popular tool in signal analysis
and other areas of applications only within the last two decades or so partly as a
result of Ingrid Daubechies’s celebrated work on the construction of compactly
supported, orthonormal wavelets. Consequently, most of the articles and ref-
erence materials on wavelets require a sophisticated mathematical background
(a good first-year real analysis course at the graduate level). Our goal with
this book is to present many of the essential ideas behind Fourier analysis and
wavelets, along with some of their applications to signal analysis, to an audience
of advanced undergraduate science, engineering, and mathematics majors. The
only prerequisites are a good calculus background and some exposure to linear
algebra (a course that covers matrices, vector spaces, linear independence, lin-
ear maps, and inner product spaces should suffice). The applications to signal
processing are kept elementary, without much use of the technical jargon of the
subject, in order for this material to be accessible to a wide audience.

Fourier Analysis

The basic goal of Fourier series is to take a signal, which will be considered as
a function of the time variable ¢, and decompose it into its various frequency
components. The basic building blocks are the sine and cosine functions:

sin(nt) cos(nt),

which vibrate at a frequency of n times per 27 interval. As an example, consider
the following function:

F(t) = sin(t) + 2 cos(3t) + 0.3sin(50¢t).
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This function has three components that vibrate at frequency 1 (the sint part),
at frequency 3 [the 2cos(3t) part], and at frequency 50 [the O. 3sm(50t) part].
The graph of f is given in Figure 1.

3..
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Figure 1 Plot of f(t) = sin(¢) + 2 cos(3t) + 0.3 sin(50t)

A common problem in signal analysis is to filter out unwanted noise. The
background hiss on a cassette tape is an example of high-frequency (audio)
noise that various devices (Dolby filters) try to filter out. In the preceding
example, the component, 0.3 sin(50t), contributes the high-frequency wiggles to
the graph of f in Figure 1. By setting the coefficient 0.3 equal to zero, the
resulting function is 5

f(t) = sin(t) + 2 cos(3t)

whose graph (given in Figure 2} is the same as the one for f but without the
high-frequency wiggles.

The preceding example shows that one approach to the problem of filtering
out unwanted noise is to express a given signal, f(t), in terms of sines and
cosines:

fit) = Z @y, cos(nt) + by, sin(nt)
n
and then to eliminate (i.e., set equal to zero) the coefficients (the a,, and b,)
that correspond to the unwanted frequencies. In the case of the signal f just
presented, this process is easy since the signal is already presented as a sum of
sines and cosines. Most signals, however, are not presented in this manner. The
subject of Fourier series, in part, is the study of how to efficiently decompose
a function into a sum of cosine and sine components so that various types of
filtering can be accomplished easily.

Another related problem in signal analysis is that of data compression. Imag-
ine that the graph of the signal f(t) in Figure 1 represents a telephone conver-
sation. The horizontal axis is time, perhaps measured in milliseconds, and the
. 10 .
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Figure 2 Plot of f(t) = sin(t) + 2 cos(3t)

vertical axis represents the electric voltage of a sound signal generated by some-
one’s voice. Suppose this signal is to be digitized and sent via satellite overseas
from America to Europe. One naive approach is to sample the signal every
millisecond or so and send these data bits across the Atlantic. However, this
would result in thousands of data bits per second for just one phone conversa-
tion. Since there will be many such conversations between the two continents,
the phone company would like to compress this signal into as few digital bits as
possible without significantly distorting the signal. A more efficient approach
is to express the signal into its Fourier series: f(t) = Y, an cos(nt) + by, sin(nt)
and then discard those coeflicients, a, and b,,, that are smaller than some toler-
ance for error. Only those coefficients that are above this tolerance need to be
sent across the Atlantic, where the signal can then be reconstructed. For most

signals, the number of significant coefficients in its Fourier series is relatively
small.

Wavelets

One disadvantage of Fourier series is that its building blocks, sines and cosines,
are periodic waves that continue forever. While this approach may be appro-
priate for filtering or compressing signals that have time-independent wavelike
features (as in Figure 1), other signals may have more localized features for
which sines and cosines do not model very well. As an example, consider the
graph given in Figure 3. This may represent a sound signal with two isolated
noisy pops that need to be filtered out. Since these pops are isolated, sines and
cosines do not model this signal very well. A different set of building blocks,
called wavelets, is designed to model these types of signals. In a rough sense, a
wavelet looks like a wave that travels for one or more periods and is nonzero only

‘11 -
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Figure 3 Graph of a signal with isolated noise
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Figure 4 Graph of Daubechies wavelet

over a finite interval instead of propagating forever the way sines and cosines do
[see Figure 4 for the graph of the Daubechies (N = 2) wavelet]. A wavelet can be
translated forward or backward in time. It also can be stretched or compressed
by scaling to obtain low- and high-frequency wavelets (see Figure 5). Once a

wavelet function is constructed, it can be used to filter or compress signals in
<12 -
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Figure 5 High-frequency Daubechies wavelet

much the same manner as Fourier series. A given signal is first expressed as
a sum of translations and scalings of the wavelet. Then the coefficients corre-
sponding to the unwanted terms are removed or modified.

In order to implement efficient algorithms for decomposing a signal into an
expansion (either Fourier or wavelet based), the building blocks (sines, cosines
or wavelets) should satisfy various properties. One convenient property is or-
thogonality, which for the sine function states

1 ifn=m.

2w .
% / sin(nt)sin(mt) dt = {0 ifn#m
0

The analogous properties hold for the cosine function as well. In addition,
f02 " sin(nt)cos(mt) dt = 0 for all n and m. We shall see that these orthogonality
properties result in simple formulas for the Fourier coefficients (the a,, and by,)
and efficient algorithms (fast Fourier transform) for their computation.

One of the difficult tasks in the construction of a wavelet is to make sure
that its translates and rescalings satisfy analogous orthogonality relationships,
so that efficient algorithms for the computation of the wavelet coefficients of a
given signal can be found. This is why we cannot construct a wavelet simply by
truncating a sine or cosine wave by declaring it to be zero outside of one or more
of its periods. Such a function, while satisfying the desired support feature of
a wavelet, would not satisfy any reasonable orthogonality relationship with its
translates and rescales and thus would not be as useful for signal analysis.

<13 -
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Outline

This text has eight chapters and two appendices. Chapter 0, on inner product
spaces, contains the necessary prerequisites for Chapters 1 through 7. The pri-
mary inner product space of interest is the space of square integrable functions,
which is presented in simplified form without the use of the Lebesgue integral.
Depending on the audience, this chapter can be covered at the beginning of
a course or can be folded into the course as the need arises. Chapter 1 con-
tains the basics of Fourier series. Several convergence theorems are presented
with simplifying hypothesis so that their proofs are manageable. The Fourier
transform is presented in Chapter 2. Besides being of interest in its own right,
much of this material is used in later chapters on wavelets. An informal proof
of the Fourier inversion formula is presented in order to keep the exposition at
an elementary level. A formal proof is given in the Appendix A. The discrete
Fourier transform and fast Fourier transform are discussed in Chapter 3. This
chapter also contains applications to signal analysis and to the identification of
the natural vibrating frequency (or sway) of a building.

Wavelets are discussed in Chapters 4 through 7. Our presentation on wavelets
starts with the case of the Haar wavelets in Chapter 4. The basic ideas behind
a multiresolution analysis and the desired features of wavelets, such as orthogo-
nality, are easy to describe with the explicitly defined Haar wavelets. However,
the Haar wavelets are discontinuous and so they are of limited use in signal anal-
ysis. The concept of a multiresolution analysis in a general context is presented
in Chapter 5. This gives a general framework that generalizes the structure
of the wavelet spaces generated by the Haar wavelet. Chapter 6 contains the
construction of the Daubechies wavelet, which is continuous and orthogonal.
Prescriptions for smoother wavelets are also given. Chapter 7 contains more
advanced topics, such as wavelets in higher dimensions and the wavelet trans-
form.

The proofs of most theorems are given in the text. Some of the more technical
theorems are discussed in a heuristic manner with complete proofs given in
Appendix A. Some of these proofs require more advanced mathematics, such as
some exposure to the Lebesgue integral.

MATLAB code that was used to generate figures or to illustrate concepts is
found in Appendix B.

This text is not a treatise. The focus of the latter half of the book is on the
construction of orthonormal wavelets. Little mention is made of bi-orthogonal
wavelets using splines and other tools. There are ample references for these
other types of wavelets (see, for example, [5]) and we want to keep the amount
of material in this text manageable for a one-semester undergraduate course.

The basics of Fourier analysis and wavelets can be covered in a one semester
undergraduate course using the following outline:

e Chapter 0, Sections 0.1 through 0.5 (Sections 0.6 and 0.7 on adjoints, least
squares, and linear predictive coding are more topical in nature). This
material can either be covered first or covered as needed throughout the
rest of the course.

» 14 -
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e Chapter 1 (Fourier Series), all sections.

o Chapter 2 (Fourier Transform), all sections except the ones on the adjoint
of the Fourier transform, and the proof of the uncertainty principle, which
are more topical in nature.

o Chapter 3 (Discrete Fourier Analysis), all sections except the Z-transform,
which is more topical in nature.

e Chapter 4 (Haar Wavelet Analysis), all sections.
e Chapter 5 (Multiresolution Analysis), all sections.

e Chapter 6 (Daubechies Wavelets), all sections.

<15
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