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Chapter 1 Elements of Petroleum Reservoir

1.1 Permeability

The basics of permeability established in the case of'" a conven-

tional reservoir remain valid®

in the case of a fractured reservoir.
But in the presence of two systems (matrix and fractures), perme-
ability may be redefined as matrix permeability, fracture permeabili-
ty and system (fracture-matrix) permeability.

This redefinition of permeability may create some confusion es-

h‘® may be interpret-

pecially concerning fracture permeability, whic
ed either as single fracture permeability or as fracture network per-
meability, or sometimes as fracture permeability of fracture-bulk
volume. Therefore, the various expressions of permeability will be
examined and discussed in detail. )

1. Intrinsic (N7ERY) fracture permeability, Kg

) the con-

The intrinsic fracture permeability is associated to
ductivity'® measured during the flow of fluid through a single frac-
ture or through a fracture network, independent of” the surround-
ing rock (matrix). Itis, in fact, the conductivity of a single channel
(fracture) or of a group of channels (fracture network). In this case
the flow cross section is represented only by'® the fracture void ar-
eas.

2. Conventional fracture permeability, K

The intrinsic fracture permeability, as discussed above, disre-
gards® the rock bulk volume associated to the single fracture or to
the group of fractures; on the contrary’'?, in the conventional frac-
ture permeability (based on the classic Darcy definition) the fracture

. 1 .



and the associated rock bulk (Z#, ¥4k) form a hydrodynamic‘!?
unit.
3. Permeability of fracture-matrix system
The permeability of a fracture-matrix system may be represent-
ed by the simple addition of the permeabilities of matrix K, and
fractures K;,
K=K, +K;

(. Notes

(1) in the case of B+ Kk, B
(2) remain valid T3RA 3K
T EIEIST R the basics of permeability, established in the
case of a conventional reservoir it ZE/HAKEIE, EEE
(3) which B F:IEFRE P E 1B MK, i fracture permeability
(4) in detail T4, TR
(5) is associated to -+ 5--- AR
(6) conductivity n. {3
(7) independent of 5+ XM, BiE% # be BhiA)“is”
(8) is represented by H--- &~
(9) disregard vt. AH, NE, TR
(10) on the contrary FiRH#1, RZ
(11) hydrodynamic a. WAKZN /1226

Directions: Decide whether the following statements are true or
false.

1. There are different definitions for permeability.

2. The expressions of permeability are not complicated.

3. The intrinsic fracture permeability discusses the rock bulk

. 2.



volume.
4. A hydrodynamic unit consists of the fracture permeability
and rock bulk.

5. The permeability of matrix system refers to K.
1.2 Connate Water Saturation

The connate water (3:7£7K) saturation is by definition® the
water saturation existing in the reservoir at discovery. It is general
but not always true that the connate water saturation is so low that
it has no permeability; that is, water does not flow upon produc-
tion. The value of connate water saturation determines by difference
the volume of reservoir oil in place.

When wells are drilled by using a water-base mud, the water
filtrate® serves to increase the water saturation in the formation ad-
joining the hole as well as in any rock sample being cored. This com-
plicates connate water evaluation by well logging techniques. Cores
cut with water-base mud cannot give a reliable estimate of the reser-
voir connate water saturation. On the other hand, cores cut with an
oil-filtrate mud can give an accurate estimate of connate water satu-
ration for those formation containing immobile connate water. An-
other reliable technique for obtaining reservoir water saturations uti-
lizes®® gas-cut cores. Any evaporation of water contained in the core
sample by the gas'® is generally insignificant. )

Another technique, termed the evaporation method, has been
proposed for determining the reservoir connate water saturation.
This method is limited to water-wet rocks, however, and even in
this case determines® not the connate saturation but the maximum
saturation at which water flow does not occur.

In performing meaningful laboratory relative permeability tests,
the magnitude(7) of the reservoir connate water saturation is impor-

. 3 .



tant. Laboratory experience has shown that the connate water satu-
ration in preferentially oil-wet cores has no effect on'® the relative

® the connate saturation is less than about

permeabilities as long as
20 percent PV. In preferentially water-wet rock, the initial water
saturation has a definite effect upon the measured water-oil relative
permeability characteristics. Therefore, in these rocks the intersti-
tial'® water saturation at the start of testing should closely approxi-
mate the reservoir connate water saturation.

Most engineers have encountered the situation in which the wa-
ter-oil relative permeability curves for the reservoir of concern have a
different irreducible connate water (3R#Z8/K) saturation than that
chosen as the average reservoir value!!P . Should the measured wa-
ter-oil flow properties be used directly or should they be adjusted in
some way to account for''?) the differences in connate water satura-
tion ? The recommended procedure calls for''® a new set of water-oil
relative permeability curves, constructed so that they adhere to{1¥
the following criteria.

1. The relative permeability to oil is 1.0 and to water is zero at
the reservoir connate water saturation.

2. The relative permeability to water at flood out and the water
saturation at this point are the same as in the laboratory test results
( the relative permeability to oil at flood out being zero, of course) .

3. The shape of the individual “reservoir” relative permeability
curves is similar to that!® of the laboratory-developed curves be-

tween the two end points of each curve.

(" Notes >
(1) by definition HR#EE X
(2) filtrate vt. vi iAIE

. 4 .



filtration n. B&W

(3) utilize [Yju:tilaiz] vz. F|H, utilization n. FFH

(4) contained in the core sample by the gas i =4 FAEIBIEE
5, B evaporation

(5) insignificant [ iinsig'nifikant] a . O/, UMK, @F%
BEW

(6) determines #FiBIE. B Fi&E £ “This method”

(7) magnitude ['maegnitjud] n. K/, FE

(8) have no effect on (upon)--- Xt--- B A R #)

(9) as long as RE

(10) interstitial [ intor'stifol] a. Z5BRAY, TERERIE MY

(11) in which-+-as the average reservoir value & M A]& i
situation

(12) account for fERE---

(13) call for Bk, FE

(14) adhere to #KHt, BHr

(15) that X3, AR R IR “The shape”

Directions: For this passage there are some questions or unfin-
ished statements. Each of them is provided with four choices marked
(a), (b), (¢) and (d). You should decide on the best choice and
mark your answer.

1. What is the connate water saturation?

a. It is the water saturation existing in the reservoir when
discovered.

b. It is the water-oil saturation existing in the formation at
discovery.

c. It is the water volume in the reservoir at discovery.

-« 5



d. It is the water quality in the reservoir at discovery.

2. We can say that .

a. the connate water saturation is so low that it has no per-
meability.

b. the connate water saturation is so low that it almost has
no permeability.

¢. the connate water saturation can be estimated by water e-
vaporation.

d. the connate water saturation in reservoir is always close
to that in laboratory.

3. In order to obtain reservoir water saturation, ____ can be
used.
a. gas-cut cores b. water-base mud
c. oil-water-base mud d. gas-oil-base mud

4. Which of the following statements is not true?

a.

The evaporation method can be used to determine the

reservoir connate water saturation.

. The value of the reservoir connate water saturation is im-

portant.
The connate water saturation is always less than 20%
PV.

. The evaporation method determines the maximum satu-

ration when water doesn’t flow.

5. The article states that .

a.

The measured water — oil flow properties can be used di-
rectly.

. The relative permeability of water to oil is 1:1 at flood-

out.
The relative permeability to oil is no more than zero.

. The relative permeability of water to oil is 0:1 at the



reservoir connate water saturation.
1.3 Fluid Content of the Reservoir

Although the structural traps in which oil accumulates exist in

various forms‘V

, the oil usually occurs in association with gas and
salt water. However, while some interstitial water is always present
in the oil zone, the latter is not always underlain by a continuous
body of water. Where a considerable volume of water does underlie
the oil in the same sedimentary bed® it is referred to as the
“aquifer” (& 7K/2) and being under pressure also™®, it con-
tributes to the total energy of the reservoir. The oil itself, when un-
der pressure, contains an appreciable quantity of dissolved gas. The
actual amount of gas will be governed(s) by the pressure and temper-
ature inside the reservoir, and the oil is said to be “saturated” if it
cannot dissolve more gas under these particular pressure and temper-
ature conditions. On the other hand, the oil is said to be “undersat-
urated” if it could dissolve more gas at the same pressure and tem-
perature. In many cases there can be more gas in the reservoir than
the oil is capable of holding in solution. This extra gas being lighter
than the oil¢®, will have formed a “gas cap” above the oil accumula-
tion. If the pressure of a saturated oil reservoir is reduced for any
reason, gas will come out of solution and, this is an important factor
in the production of oil from the reservoir. It is also possible to find
accumulations of gas which are not associated with oil, as is the case
in the Southern North Sea.

The reservoir crude may range from a very heavy viscous (i.e.
thick) oil, containing little or no dissolved gas under very low pres-
sure, to”) an extremely light, thin, straw-coloured oil containing a
large amount of dissolved gas under considerable pressure. The vis-
cosity of the oil depends roughly on its gravity(s) and also to a large
. 7 .



