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students in computer science, computer engineering, and electri-

cal engineering. It has no prerequisites, although the maturity
attained through an introduction to engineering course or a first pro-
gramming course would be helpful.

The book stresses fundamentals. It teaches through a large number
of examples. The philosophy of the author is that the only way to learn
logic design is to do a large number of design problems. Thus, in addi-
tion to the numerous examples in the body of the text, each chapter has a
set of Solved Problems, that is, problems and their solutions, as well as a
large set of Exercises. In addition, there are a set of laboratory experi-
ments that tie the theory to the real world. The Appendix provides the
background to do these experiments with a standard hardware laboratory
(chips, switches, lights, and wires), a breadboard simulator (for the PC or
Macintosh), and two schematic capture tools. The course can be taught
without the laboratory, but the student will benefit significantly from the
addition of 8-10 selected experiments.

Although computer-aided tools are widely used for the design of
large systems, the student must first understand the basics. The basics
provide more than enough material for a first course. The schematic cap-
ture laboratory exercises and a section on Hardware Design Languages
in Chapter 6 provide some material for a transition to a second course
based on one of the computer-aided tool sets.

Chapter 1 gives a brief overview of number systems as it applies to
the material of this book. (Those students who have studied this in an ear-
lier course can skip to Section 1.2.) It then discusses the steps in the design
process for combinational systems and the development of truth tables.

Chapter 2 introduces switching algebra and the implementation of
switching functions using common gates—AND, OR, NOT, NAND,
NOR, and Exclusive-OR. We are only concerned with the logic behavior
of the gates, not the electronic implementation.

Chapter 3 deals with two simplification techniques, the Karnaugh
map and Iterated Consensus. It provides methods for solving problems
(up to six variables with the map) with both single and multiple outputs.

Chapter 4 is concerned with the design of larger combinational sys-
tems. It introduces a number of commercially available larger devices,
including adders, decoders, encoders and priority encoders, and multi-
plexers. That is followed by a discussion of the use of logic arrays—
ROMs, PLAs, and PALs for the implementation of medium-scale combi-
national systems. Finally, two larger systems are designed.

This book is intended as an introductory logic design book for
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Chapter 5 introduces sequential systems. It starts by examining the
behavior of latches and flip flops. The design process for sequential sys-
tems is then presented. Before designing sequential systems, several sys-
tems are analyzed. The special case of counters is studied next. Finally,
the solution of word problems, developing the state table or state dia-
gram from a verbal description of the problem is presented in detail.

Chapter 6 looks at larger sequential systems. It starts by examining
the design of shift registers and counters. Then, PLDs are presented. Two
techniques that are useful in the design of more complex systems, ASM
diagrams and HDLs, are discussed next. Finally, two examples of larger
systems are presented.

Chapter 7 deals with state reduction and state assignment issues.
First, a tabular approach for state reduction is presented. Then partitions
are utilized both for state reduction and for achieving a state assignment
that will utilize less combinational logic.

A feature of this text is the Solved Problems. Each chapter has a large
number of problems, illustrating the techniques developed in the body of
the text, followed by a detailed solution of each problem. Students are
urged to solve each problem (without looking at the answer) and then
compare their solution with the one shown.

Each chapter concludes with a large set of exercises. Solution to
these will be made available through the Web.

Another unique feature of the book is the laboratory exercises, in-
cluded in the Appendix. Four platforms are presented—a hardware based
Logic Lab (using chips, wires, etc.); a hardware lab simulator that allows
the student to “connect” wires on the computer screen; and two circuit
capture programs, LogicWorks IV and Altera Max+plus II. Enough in-
formation is provided about each to allow the student to perform a
variety of experiments. A set of 25 laboratory exercises are presented.
Several of these have options, to allow the instructor to change the
details from one term to the next.

We teach this material as a 4-credit course that includes an average
of 3 1/2 hours per week of lecture, plus, typically, eight laboratory exer-
cises. (The lab is unscheduled; it is manned by Graduate Assistants
40 hours per week; they grade the labs.) In that course we cover

Chapter 1: all of it

Chapter 2: all but 2.11

Chapter 3: all of 3.1

Chapter 4: all but 4.8. However, there is a graded design problem
based on that material (10 percent of the grade; students usually
working in groups of 2 or 3).

Chapter 5: all, though sometimes we skip 5.6

Chapter 6: 6.1, 6.2, and 6.3. We sometimes have a second project
based on 6.6.
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Chapter 7 and Section 3.2: We often have some time to look at one
of these. We have never been able to cover both.

With less time, the coverage of Section 2.10 could be minimized.
Section 3.1.5 is not needed for continuity; Section 3.1.6 is used some-
what in the discussion of PLAs in Section 4.7.2. Chapter 4 is not needed
for anything else in the text, although many of the topics are useful to
students elsewhere. Sections 5.5 and 5.6 could be eliminated without
loss of continuity. As is the case for Chapter 4, the instructor can pick and
choose among the topics of Chapter 6. With a limited amount of time,
Section 7.1 could be covered. With more time, it could be skipped and
state reduction taught using partitions (7.2 and 7.3).
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Introduction

eferred to as logic design. A digital system is one in which all of

the signals are represented by discrete values. Computers and
calculators are obvious examples, but most electronic systems contain a
large amount of digital logic. Internally, digital systems usually operate
with two-valued signals, which we will label 0 and 1. Such a system, as
shown in Figure 1.1, may have an arbitrary number of inputs (4, B, . . .)
and an arbitrary number of outputs (W, X, . . .).

In addition to the data inputs shown, some circuits require a timing
signal, called a clock (which is just another input signal that alternates
between 0 and 1 at a regular rate). We will discuss the details of clock
signals in Chapter 5.

A simple example of digital systems is shown in Example 1.1.

rI“his book concerns the design of digital systems, a process often
T

Figure 1.1 A digital system.

A —>
B —

—_—

Digital
System

p——— W
i X

I—

ninputs

A system with three inputs, A, B, and C, and one output, Z, such that Z = 1
if and only if' two of the inputs are 1.

m outputs

m

The inputs and outputs of a digital system represent real quantities.
Sometimes, as in Example 1.1, these are naturally binary, that is, they
take on one of two values. Other times, they may be multivalued. For
example, an input may be a decimal digit or the output might be the letter
grade for this course. Each must be represented by a set of binary digits
(often called bits). This process is referred to as coding the inputs and
outputs into binary. (We will discuss the details of this later.)

'"The term if and only if is often abbreviated iff. It means that the output is 1 if the
condition is met and is not 1 (which means it must be 0) if the condition is not met.



Table 1.1 A truth table for
Example 1.1.

EXAMPLE 1.2

EXAMPLE 1.3

Chapter 1 Introduction

The physical manifestation of these binary quantities may be one of
two voltages, for example, O volts or ground for logic 0 and 5 volts for
logic 1, as in the laboratory implementations we will be discussing in the
Appendix. It may also be a magnetic field in one direction or another (as
on diskettes), a switch in the up or down position (for an input), or a light
on or off (as an output). Except in the discussion of specific laboratory
experiments and in the translation of verbal descriptions into more for-
mal ones, the physical representation will be irrelevant in this text; we
will be concerned with 0’s and 1’s.

We can describe the behavior of a digital system, such as that of
Example 1.1, in tabular form. Since there are only eight possible input
combinations, we can list all of them and what the output is for each.
Such a table (referred to as a truth table) is shown in Table 1.1. We will
leave the development of truth tables (including one similar to this) to
later in the chapter.

Two other examples are given in Examples 1.2 and 1.3.

A system with eight inputs, representing two 4-bit binary numbers, and one
5-bit output, representing the sum. (Each input number can range from 0 to
15; the output can range from 0 to 30.)

A system with one input, A, plus a clock, and one output, Z, which is 1 iff
the input was one at the last three consecutive clock times.

The first two examples are combinational, that is, the output depends
only on the present value of the input. In the Example 1.1, if we know the
value of A, B, and C right now, we can determine what Z is now.’
Example 1.3 is sequential, that is, it requires memory, since we need to
know something about inputs at an earlier time (previous clock times).

We will concentrate on combinational systems in the first half of the
book and leave the discussion about sequential systems until later. As we
will see, sequential systems are composed of two parts, memory and
combinational logic. Thus, we need to be able to design combinational
systems before we can begin designing sequential ones.

A word of caution about natural language in general, and English in
particular, is in order. English is not a very precise language. The exam-
ples given above leave some room for interpretation. In Example 1.1, is
the output to be 1 if all three of the inputs are 1, or only if exactly two

’In a real system, there is a small amount of delay between the input and output, that is, if
the input changes at some point in time, the output changes a little after that. The time
frame is typically in the nanosecond (10~° sec) range. We will ignore those delays almost
all of the time, but we will return to that issue in Chapter 4.
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inputs are 1?7 One could interpret the statement either way. When we
wrote the truth table, we had to decide; we interpreted “two” as “two or
more” and thus made the output 1 when all three inputs were 1. (In prob-
lems in this text, we will try to be as precise as possible, but even then,
different people may read the problem statement in different ways.)

The bottom line is that we need a more precise description of logic
systems. We will develop that for combinational systems in the first two
chapters and for sequential systems in Chapter 5.

1.1 A BRIEF REVIEW OF
NUMBER SYSTEMS

This section gives an introduction to some topics in number systems, pri-
marily those needed to understand the material in the remainder of the
book. We will only deal with integers. If this is familiar material from
another course, skip to Section 1.2.

Integers are normally written using a positional number system,
where each digit represents the coefficient in a power series

— n—1 n—2 P 2
N=a, " " +a, ,r""°+ +a,r*+ar+a,

where n is the number of digits, r is the radix or base, and the g, are the
coefficients, where each is an integer in the range

O0=gq<r

For decimal, r = 10, and the a’s are in the range 0 to 9. For binary, r = 2,
and the a’s are all either 0 or 1. Other commonly used notations in
computer documentation are octal, r = 8, and hexadecimal, r = 16. In
binary, the digits are usually referred to as bits, a contraction for binary
digits.

The decimal number 7642 (sometimes written 7642, to emphasize
that it is radix 10, that is, decimal) thus stands for

7642,)=7 X 10° + 6 X 10 +4 X 10 + 2
and the binary number

101111, =1X22+0X2*+1 X 22 +1 X22+1X2+1
=32+8+4+2+1=47,

From this last example,3 it is clear how to convert from binary to deci-
mal; just evaluate the power series. To do that easily, it is useful to know
the powers of 2, rather than compute them each time they are needed.

3Section 1.6, Solved Problems, contains additional examples of each of the types of
problems discussed in this chapter. There is a section of Solved Problems in each of the
other chapters.
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(It would save a great deal of time and effort if at least the first ten pow-
ers of 2 were memorized; the first 20 are shown in the Table 1.2.)

Table 1.2 Powers of 2.

n o e 2"
1 2 11 2,048
2 4 12 4,096
3 8 13 8,192
4 16 14 16,384
5 32 15 32,768
6 64 16 65,536
7 128 17 131,072
8 256 18 262,144
9 512 19 524,288

10 1,024 20 1,048,576

We will often be using the first 16 positive binary integers, and
sometimes the first 32, as shown in the Table 1.3. (As in decimal, leading
0’s are often left out, but we have shown the 4-bit number including lead-
ing O’s for the first 16.) When the size of the storage place for a positive
binary number is specified, then leading O’s are added so as to obtain the
correct number of bits.

Table 1.3 First 32 binary integers.

Decimal Binary 4-bit Decimal Binary
0 0 0000 16 10000
1 1 0001 17 10001
2 10 0010 18 10010
3 " 0011 19 10011
4 100 0100 20 10100
B 101 0101 21 10101
6 110 0110 22 10110
7 111 0111 23 10111
8 1000 1000 24 11000
< 1001 1001 25 11001
10 1010 1010 26 11010
11 1011 1011 27 11011
12 1100 1100 28 11100
13 1101 1101 29 11101
14 1110 1110 30 11110

15 1111 1111 31 11111

Note that the number one less than 2" consists of n 1’s (for example,
2 —1=1111 =15and 2° — 1 = 11111 = 31).
An n-bit number can represent the positive integers from 0 to
2" — 1. Thus, for example, 4-bit numbers have the range of O to 15, 8-bit
numbers 0 to 255 and 16-bit numbers O to 65,535.
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To convert from decimal to binary, we could evaluate the power
series of the decimal number, by converting cach digit to binary, that is

746 = 111 X (1010)'° + 0100 X 1010 + 0110

but that requires binary multiplication, which is rather time-consuming,
There are two straightforward algorithms using decimal arithmetic.
First, we can subtract from the number the largest power of 2 less than
that number and put a 1 in the corresponding position of the binary
equivalent. We then repeat that with the remainder. A O is put in the
position for those powers of 2 which are larger than the remainder.

For 746, 2° = 512 s the largest power of 2 less than or equal to 746, and
thus there is a 1 in the 2° (512) position. We then compute 746 — 512 =
234. The next smaller power of 2 is 2° = 256, but that is larger than 234
and thus, there is a 0 in the 2” position. Next, we compute 234 — 128 =
106, putting a 1 in the 27 position. (Now, the binary number begins 101.)
Continuing, we subtract 64 from 106, resulting in 42 and a 1 in the 2¢
position (and now the number begins with 1011). Since 42 is larger than
32, we have a 1 n the 2” position, and compute 42 — 32 = 10. At this
point, we can continue subtracting (8 next) or recognize that there is no
2* = 16, and that the binary equivalent of the remainder, 10, is 1010, giving

746, =1X2°2+0N2"+1X27+1X2°+ 1\ 2" +0x%x2*
+1X22+0Xx22+1%x2+0
= 1011101010,

EXAMPLE 1.4

The other approach is to divide the decimal number by 2 repeatedly.
The remainder each time gives a digit of the binary answer, starting at the
least significant bit (a,). The remainder is then discarded and the process
is repeated.

Converting 746 from decimal to binary, we compute 746/2 = 373 with a
remainder of 0. Then, 373/2 - 186 with a rermainder of 1, giving the last
two bits of the answer as 10. Continuing, 186/2 = 93 with a remainder of
0, 93/2 = 46, remainder 1; 46/2 = 23, ramainder 0, giving 01070 so far;
23/2 = 11, remainder 1, 11/2 = 5, remainder 1; 5/2 = 2, remainder 1;
2/2 = 1, remainder O; and 1/2 = 0, remainder 1. Thus the answer is
1011101010 as before. In this method, we could also stop when we rec-
ognize the number that is left and convert it to binary. Thus, when we had
23, we could recognize that as 10111 (from Table 1.3) and place that in
front of the bits we had produced, giving 10111 1010,

EXAMPLE 1.5
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Convert 105 to binary

105/2 = 52, rem 1 produces 1
52/2 = 26,rem 0 01
26/2 = 13,rem 0 00t

but 13 = 1101 1101 001

[SP 1, 2; EX 1, 2]*

The method works because all of the terms in the power series
except the last divide evenly by 2. Thus,

746/2 = 373 and remainder of 0
= 1IX24+0X27+1X2°4+1X2+1x22+0x2
+1X224+0X2+1+rem0

The last bit became the remainder. If we repeat the process, we get

373/2 = 186 and remainder of 1
IX274+0X2°4+1X27+1X2*+1x2°
+0X22+1X2+0+rem!

il

That rematnder is the second digit from the right. On the next division,
the remainder will be 0, the third digit. This process continues until the
last bit is found.

1.1.1 Octal and Hexadecimal®

Octal (r = 8) and hexadecimal, often referred to as hex (r = 16) are two
other bases that are commonly used in computer documentation. Each
is just a shorthand notation for binary. In octal, binary digits are
grouped in threes (starting at the least significant). For example, a 9-bit
number,
N=(h2"+ b2 + 52" + (b2° + b2t + by2Y)
+ (h27 + b2" + by
=25(h 2" + h.2" + b)) + 22(bs2* + b2' + by)
+ (b2 + b2 + by)
= 8203 + 80, + 0,

where the o, represent the octal digits and must fall in the range O to 7.
Each term in parentheses is just interpreted in decimal. If the binary
number does not have a multiple of 3 bits, leading 0’s are added.

“At the end of most sections, a list of solved problems and exercises that are appropriate
to that section is given.
*This section may be omitted; the material is not needed elsewhere in the text.



