& il R hi it 3

L RN

i RE S X

(RIhR)
COMPILER CONSTRUCTION

Practice

Kenneth C. Louden
() Kenneth C. Louden #

] A s R fofE M AR 4

Chu‘]g [vlochlne Press CITIC PUBLISHING HOUSE

#a
o
=]
=
Q
h

-
=
g
g
9
~

(%)

Kenneth C. Louden: Compiler Construction Principles and Practice
Original copyright © 1997 by PWS Publishing Company. All rights reserved. _
First published by PWS Publihing Company, a division of Thomson Learning, United

States of America.
Reprinted for People’s Republic of China by Thomson Asia Pte Ltd and China Machine

Press and CITIC Publishing House under the authorization of Thomson Learning. No part of

this book may be reproduced in any form without the the prior written permission of Thomson

Learning and China Machine Press.

A5 5 SCR FVAR h 38 B 18 3R 4) th AR SR VR AOPLAR b s R e 5 1 AL A AR . &
ZHEVFT, AMELUEM T RE RS EZEBAE,
MR, RALLTL

FHREWEFIZS: BF: 01-2001-5320

EEHENSE (CIP) HiE

IR 5T (£) #55 (Louden, K. L.) E. - 4t Pk Tk B iR, 20028
(ZHFRRFEE)

F BB : Compiler Construction Principles and Practice
ISBN 7-111-10842-6

I. % 0.#%- 0. HFBEF-BFET-% V. TP314
o E AR A B BEHCIPRIER F (2002) 0631845

U T AR (s AR AT EA#E2S BBAHE100037)

TiEmE: #% .
A5 EAZ W ED R ERRY - B HE AL RURAT TR AT
200248 7 25 1 KRS 10 E R

787mm x 1092mm1/16 - 37EQ#
Ei%. 0001-3 000/
Efr: 58.000T

FaA$, AR, B, S5, hARTEAR

Preface

This book is an introduction to the field of compiler construction. It combines a detailed
study of the theory underlying the modern approach to compiler design, together with
many practical examples, and a complete description, with source code, of a compiler
for a small language. It is specifically designed for use in an introductory course on
compiler design or compiler construction at the advanced undergraduate level.
However, it will also be of use to professionals joining or beginning a compiler writing
project, as it aims to give the reader all the necessary tools and practical experience to
design and program an actual compiler.

A great many texts already exist for this field. Why another one? Because virtually
all current texts confine themseives to the study of only one of the two important
aspects of compiler construction. The first variety of text confines itself to a study of
the theory and principles of compiler design, with only brief examples of the applica-
tion of the theory. The second variety of text concentrates on the practical goal of pro-
ducing an actual compiler, either for a real programming language or a pared-down ver-
sion of one, with only small forays into the theory underlying the code to explain its
origin and behavior. I have found both approaches lacking. To really understand
the practical aspects of compiler design, one needs to have a good understanding of the
theory, and to really appreciate the theory, one needs to see it in action in a real or
near-real practical setting.

This text undertakes to provide the proper balance between theory and practice, and
to provide enough actual implementation detail to give a real flavor for the techniques
without overwhelming the reader. In this text, I provide a complete compiler for a small
language written in C and developed using the different techniques studied in each
chapter. In addition, detailed descriptions of coding techniques for additional language
examples are given as the associated topics are studied. Finally, each chapter concludes
with an extensive set of exercises, which are divided into two sections. The first con-
tains those of the more pencil-and-paper variety involving little programming. The sec-
ond contains those involving a significant amount of programming.

In writing such a text one must also take into account the different places that a
compiler course occupies in different computer science curricula. In some programs, a
course on automata theory is a prerequisite; in others, a course on programming lan-
guages is a prerequisite; while in yet others no prerequisites (other than data structures)
are assumed. This text makes no assumptions about prerequisites beyond the usual data

PREFACE vii

structures course and a familiarity with the C language, yet is arranged so that a pre-
requisite such as an automata theory course can be taken into account. Thus, it should
be usable in a wide variety of programs.

A final problem in writing a compiler text is that instructors use many different
classroom approaches to the practical application of theory. Some prefer to study the
techniques using only a series of separate small examples, each targeting a specific con-
cept. Some give an extensive compiler project, but make it more manageable with the
use of Lex and Yacc as tools. Others ask their students to write all the code by hand
(using, say, recursive descent for parsing) but may lighten the task by giving students
the basic data structures and some sample code. This book should lend itself to all of

these scenarios.

Overview and Organization

In most cases each chapter is largely independent of the others, without artificially
restricting the material in each. Cross-references in the text allow the reader or instruc-
tor to fill in any gaps that might arise even if a particular chapter or section is skipped.

Chapter 1 is a survey of the basic structure of a compiler and the techniques stud-
ied in later chapters. It also includes a section on porting and bootstrapping.

Chapter 2 studies the theory of finite automata and regular expressions, and then
applies this theory to the construction of a scanner both by hand coding and using
the scanner generation tool Lex.

Chapter 3 studies the theory of context-free grammars as it pertains to parsing, with
particular emphasis on resolving ambiguity. It gives a detailed description of three
common notations for such grammars, BNF, EBNF, and syntax diagrams. It also
discusses the Chomsky hierarchy and the limits of the power of context-free gram-
mars, and mentions some of the important computation-theoretic results concerning
such grammars, A grammar for the sample language of the text is also provided.

Chapter 4 studies top-down parsing algorithms, in particular the methods of recur-
sive-descent and LL(1) parsing. A recursive-descent parser for the sample language
is also presented.

Chapter 5 continues the study of parsing algorithms, studying bottom-up parsing in
detail, culminating in LALR(1) parsing tables and the use of the Yacc parser gen-
erator tool. A Yacc specification for the sample language is provided.

Chapter 6 is a comprehensive account of static semantic analysis, focusing on
attribute grammars and syntax tree traversals. It gives extensive coverage to the
construction of symbol tables and static type checking, the two primary examples
of semantic analysis. A hash table implementation for a symbol table is also given
and is used to implement a semantic analyzer for the sample language.

Chapter 7 discusses the common forms of runtime environments, from the fully
static environment of Fortran through the many varieties of stack-based environ-
ments to the fully dynamic environments of Lisp-like languages. It also provides an
implementation for a heap of dynamically allocated storage.

Chapter 8 discusses code generation both for intermediate code such as three-
address code and P-code and for executable object code for a simple von Neumann

viii

PREFACE

architecture, for which a simulator is given. A complete code generator for the sam-
ple language is given. The chapter concludes with an introduction to code opti-
mization techniques.

Three appendices augment the text. The first contains a detailed description of a
language suitable for a class project, together with a list of partial projects that can
be used as assignments. The remaining appendices give line-numbered listings of
the source code for the sample compiler and the machine simulator, respectively.

Use as a Text

This text can be used in a one-semester or two-semester introductory compiler course,
either with or without the use of Lex and Yacc compiler construction tools. If an
automata theory course is a prerequisite, then Sections 2.2., 2.3, and 2.4 in Chapter 2
and Sections 3.2 and 3.6 in Chapter 3 can be skipped or quickly reviewed. In a one-
semester course this still makes for an extremely fast-paced course, if scanning, pars-
ing, semantic analysis, and code generation are all to be covered. '

One reasonable alternative is, after an overview of scanning, to simply provide a
scanner and move quickly to parsing. (Even with standard techniques and the use of C,
input routines can be subtly different for different operating systems and platforms.)
Another alternative is to use Lex and Yacc to automate the construction of a scanner
and a parser (I do find, however;, that in doing this there is a risk that, in a first course,
students may fail to understand the actual algorithms being used). If an instructor
wishes to use only Lex and Yacc, then further material may be skipped: all sections of
Chapter 4 except 4.4, and Section 2.5 of Chapter 2.

If an instructor wishes to concentrate on hand coding, then the sections on Lex and
Yacc may be skipped (2.6, 5.5. 5.6, and 5.7). Indeed, it would be possible to skip all of
Chapter 5 if bottom-up parsing is ignored.

Similar shortcuts may be taken with the later chapters, if necessary, in either a tools-
based course or a hand-coding style course. For instance, not all the different styles of
attribute analysis need to be studied (Section 6.2). Also, it is not essential to study in
detail all the different runtime environments cataloged in Chapter 7. If the students are
to take a further course that will cover code generation in detail, then Chapter 8 may be
skipped.

In a two-quarter or two-semester course it should be possible to cover the en-
tire book.

Internet Availability of Resources

All the code in Appendices B and C is available on the Web at locations pointed to from
my home page (http://www.mathcs.sjsu.edu/faculty/louden/). Additional resources,
such as errata lists and solutions to some of the exercises, may also be available from
me. Please check my home page or contact me by e-mail at louden@cs.sjsu.edu.

Acknowledgments

My interest in compilers began in 1984 with a summer course taught by Alan Demers.
His insight and approach to the field have significantly influenced my own views.

PREFACE ix

Indeed, the basic organization of the sample compiler in this text was suggested by that
course, and the machine simulator of Appendix C is a descendant of the one he
provided.

More directly, [would like to thank my colleagues Bill Giles and Sam Khuri at San
Jose State for encouraging me in this project, reading and commenting on most of the
text, and for using preliminary drafts in their classes. [would also like to thank the stu-
dents at San Jose State University in both my own and other classes who provided use-
ful input. Further, I would like to thank Mary T. Stone of PWS for gathering a great
deal of information on compiler tools and for coordinating the very useful review
process.

The following reviewers contributed many excellent suggestions, for which I am
grateful:

Jeff Jenness Jerry Potter
Arkansas State University Kent State University
Joe Lambert Samuel A. Rebelsky
Penn State University Dartmouth College
Joan Lukas

University of Masschusetts, Boston

Of course I alone am responsible for any shortcomings of the text. I have tried to make
this book as error-free as possible. Undoubtedly errors remain, and I would be happy to
hear from any readers willing to point them out to me.

Finally, I would like to thank my wife Margreth for her understanding, patience,
and support, and our son Andrew for encouraging me to finish this book.

KCL

Contents

[INTRODUCTION |

.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

! SCANNING 31

2.1
22
2.3
24
25
2.6

Why Compilers! A Brief History 2
Programs Related to Compilers 4

The Translation Process 7

Major Data Structures in a Compiler |3
Other Issues in Compiler Structure 14
Bootstrapping and Porting 8

The TINY Sample Language and Compiler 22
C-Minus: A Language for a Compiler Project 26
Notes and References 29

Exercises

27

The Scanning Process 32

Regular Expressions 34

Finite Automata 47

From Regular Expressions to DFAs 64
Implementation of a TINY Scanner 75
Use of Lex to Generate a Scanner Automatically 81
Programming Exercises 93
Notes and References 94

Exercises

89

3 CONTEXT-FREE GRAMMARS AND PARSING 95

3.1
32
33
34
35
3.6
3.7

The Parsing Process 96
Context-Free Grammars 97
Parse Trees and Abstract Syntax Trees 106

Ambiguity

114

Extended Notations: EBNF and Syntax Diagrams
Formal Properties of Context-Free Languages
Syntax of the TINY Language 133

Exercises

138

Notes and References

142

123
128

4 TOP-DOWN PARSING

4.1
4.2
43
44
4.5

3 BOTTOM-UP PARSING

3.
5.2
5.3
54
5.5
5.6
5.7

6 SEMANTIC ANALYSIS

6.1
6.2
6.3
6.4
6.5

CONTENTS

143

Top-Down Parsing by RecurSivefDescent 144

LL(1) Parsing 152

First and Follow Sets 168

A Recursive-Descent Parser for the TINY Language 180
Error Recovery in Top-Down Parsers 183

Exercises 189 Programming Exercises 193

Notes and References 196

1917

Overview of Bottom-Up Parsing 198

Finite Automata of LR(0) ltems and LR(0) Parsing 201
SLR(1) Parsing 210

General LR(1) and LALR(1) Parsing 217

Yacc: An LALR(1) Parser Generator 226

Generation of a TINY Parser Using Yacc 243

Error Recovery in Bottom-Up Parsers 245

Exercises 250 Programming Exercises 254
Notes and References 256

251

Attributes and Attribute Grammars 259
Algorithms for Attribute Computation 270

The Symbol Table 295

Data Types and Type Checking 313

A Semantic Analyzer for the TINY Language 334
Exercises 339 Programming Exercises 342
Notes and References 343

1 RUNTIME ENVIRONMENTS 345

7.
7.2
7.3
7.4
7.5
7.6

Memory Organization During Program Execution 346
Fully Static Runtime Environments 349

Stack-Based Runtime Environments 352

Dynamic Memory 373

Parameter Passing Mechanisms 381

A Runtime Environment for the TINY Language 386
Exercises 388 Programming Exercises 395
Notes and References 396

(ONTENTS v

8 CODE GENERATION

8.1
82
83
84
85
86
87
88
89
8.10

391

Intermediate Code and Data Structures for Code Generation 398
Basic Code Generation Techniques 407
Code Generation of Data Structure References 416
Code Generation of Control Statements and Logical Expressions 428
Code Generation of Procedure and Function Calls 436
Code Generation in Commercial Compilers: Two Case Studies 443
TM: A Simple Target Machine 453
A Code Generator for the TINY Language 459
A Survey of Code Optimization Techniques 468
Simple Optimizations for the TINY Code Generator 481
Exercises 484 Programming Exercises 488
Notes and References 489

Appendix A: A COMPILER PROJECT 491

Al
A2
A3
A4
AS

Lexical Conventions of C— 491

Syntax and Semantics of C— 492

Sample Programs in C— 496

A TINY Machine Runtime Environment for the C— Language 497
Programming Projects Using C— and TM 500

Appendix B: TINY COMPILER LISTING 502
Appendix . TINY MACHINE SIMULATOR LISTING 545

Bibliography 558
Index 562

(hapter |

Introduction

I.I Why Compilers? A Brief [.5 Other Issues in Compiler
History Structure

1.2 Programs Related to |.6 Bootstrapping and Porting
Compilers 1.7 The TINY Sample Language

1.3 The Transiation Process and Compiler

1.4 Major Data Structures in a .8 C-Minus: A Language for a
Compiler Compiler Project

P

Compilers are computer programs that translate one language to another, A com-
piler takes as its input a program written in its source language and produces an
equivalent program written in its target language. Usually, the source language is a
high-level language, such as C or C++, and the target language is object code
(sometimes also called machine code) for the target machine, that is, code written
in the machine instructions of the computer on which it is to be executed. We can
view this process schematically as follows:

Target

Source ____ w —
s rogram

Program

f
i3

A compiler is a fairly complex program that can be anywhere from 10,000 to
1,000,000 lines of code. Writing such a program, or even understanding it, is not 2
simple task, and most computer scientists and professionals will never write a com-
plete compiler. Nevertheless, compilers are used in almost all forms of computing,
and anyone professionally involved with computers should know the basic organiza-
tion and operation of a compiler. In addition, a frequent task in computer applica-
tions is the development of command interpreters and interface programs, which
are smaller than compilers but which use the same techniques. A knowledge of
these techniques is, therefore, of significant practical use.

It is the purpose of this text not only to provide such basic knowledge but also
to give the reader all the necessary tools and practical experience to design and pro-

2 CHAPTER | / INTRODUCTION

gram an actual compiler. To accomplish this, it is necessary to study the theoretical
techniques, mainly from automata theory, that make compiler construction a man-
ageable task. In covering this theory, we do not assume that the reader has previous
knowledge of automata theory, Indeed, the viewpoint taken here is different from
that in a standard automata theory text, in that it is aimed specifically at the com-
pilation process. Nevertheless, a reader who has studied automata theory will find
the theoretical material more familiar and will be able to proceed more quickly
through those sections. In particular, Sections 2.2, 2.3, 2.4, and 3.2 may be skipped
or skimmed by a reader with a good background in automata theory. In any case,
the reader should be familiar with basic data structures and discrete mathematics.
Some knowledge of machine architecture and assembly language is also essential,
particularly for the chapter on code generation.

The study of the practical coding techniques themselves requires careful plan-
ning, since even with a good theoretical foundation the details of the code can be
complex and overwheiming. This text contains a series of simple examples of pro-
gramming language constructs that are used to elaborate the discussion of the tech-
niques. The language we use for this discussion is called TINY. We also provide (in
Appendix A) a more extensive example, consisting of a small but sufficiently complex
subset of C, which we call C-Minus, which is suitable for a class project. In addition
there are numerous exercises; these include simple paper-and-pencil exercises,
extensions of code in the text, and more involved coding exercises.

In generai, there is significant interaction between the structure of a compiler
and the design of the programming fanguage being compiled. In this text we will only
incidentally study language design issues. Other texts are available that more fully
treat programming language concepts and design issues. (See the Notes and Refer-
ences section at the end of this chapter.)

We begin with a brief look at the history and the raison d'atre of compilers,
together with a description of programs related to compilers. Then, we examine the
structure of a compiler and the various translation processes and associated data
structures and tour this structure using a simple concrete example. Finally, we give
an overview of other issues of compiler structure, including bootstrapping and port-
ing, concluding with a description of the principal language examples used in the
remainder of the book.

I WHY COMPILERS? A BRIEF HISTORY

With the advent of the stored-program computer pioneered by John von Neumann in
the late 1940s, it became necessary to write sequences of codes, or programs, that
would cause these computers to perform the desired computations. Initially, these pro-
grams were wrilten in machine language —numeric codes that represented the actual
machine operations to be performed. For example,

C7 06 0000 0002

represents the instruction to move the number 2 to the location 0000 (in hexadecimal)
on the Intel 8x86 processors used in IBM PCs. Of course, writing such codes is
extremely time consuming and tedious, and this form of coding was soon replaced by

Il Why Compilers? A Brief History ' 3

assembly language, in which instructions and memory locations are given symbolic
forms. For example, the assembly language instruction

MOV X , 2

is equivalent to the previous machine instruction (assuming the symbolic memory loca-
tion X is 0000). An assembler translates the symbolic codes and memory locations of
assembly language into the corresponding numeric codes of machine language.
Assembly language greatly improved the speed and accuracy with which programs
could be written, and it is still in use today, especially when extreme speed or concise-
ness of code is needed. However, assembly language has a number of defects: it is still
not easy to write and it is difficult to read and understand. Moreover, assembly lan-
guage is extremely dependent on the particular machine for which it was written, so
code written for one computer must be completely rewritten for another machine.
Clearly, the next major step in programming technology was to write the operations of
a program in a concise form more nearly resembling mathematical notation or natura!
language, in a way that was independent of any one particular machine and yet capable
of itself being translated by a program into executable code. For example, the previous
assembly language code can be written in a concise, machine-independent form as

X =2

At first, it was feared that this might not be possible, or if it was, then the object code
would be so inefficient as to be useless.

The development of the FORTRAN language and its compiler by a team at IBM led
by John Backus between 1954 and 1957 showed that both these fears were unfounded.
Nevertheless, the success of this project came about only with a great deal of effort,
since most of the processes involved in translating programming languages were not
well understood at the time.

At about the same time that the first compiler was under development, Noam
Chomsky began his study of the structure of natural language. His findings eventually
made the construction of compilers considerably easier and even capable of partial
automation. Chomsky’s study led to the classification of languages according to the
complexity of their grammars (the rules specifying their structure) and the power of
the algorithms needed to recognize them. The Chomsky hierarchy, as it is now called,
consists of four levels of grammars, caled the type O, type 1, type 2, and type 3 gram-
mars, each of which is a specialization of its predecessor. The type 2, or context-free,
grammars proved to be the most useful for programming languages, and today they
are the standard way to represent the stucture of programming languages. The study of
the parsing problem (the determination of efficient algorithms for the recognition of
context-free languages) was pursued in the 1960s and 1970s and led to a fairly com-
plete solution of this problem, which today has become a standard part of compiler the-
ory. Context-free languages and parsing algorithms are studied in Chapters 3, 4, and 5.

Closely related to context-free grammars are finite automata and regular expres-
sions, which correspond to Chomsky’s type 3 grammars. Begun at about the same time
as Chomsky’s work, their study led to symbolic methods for expressing the structure of
the words, or tokens, of a programming language. Chapter 2 discusses finite automata

and regular expressions.

4 CHAPTER | / INTRODUCTION

Much more complex has been the development of methods for generating efficient
object code, which began with the first compilers and continues to this day. These tech-
niques are usually misnamed optimization techniques, but they really shouid be called
code improvement techniques, since they almost never result in truly optimal object
code but only improve its efficiency. Chapter 8 describes the basics of these techniques.

As the parsing problem became well understood, a great deal of work was devoted
to developing programs that would automate this part of compiler development. These
programs were originally called compiler-compilers, but are more aptly referred to as
parser generators, since they automate only one part of the compilation process. The
best-known of these programs is Yacc {yet another compiler-compiler) written by Steve
Johnson in 1975 for the Unix system. Yacc is studied in Chapter 5. Similarly, the study
of finite automata led to the development of another tool called a scanner generator,
of which Lex (developed for the Unix system by Mike Lesk about the same time as
Yacc) is the best known. Lex is studied in Chapter 2.

During the late 1970s and early 1980s, a number of projects focused on automating
the generation of other parts of a compiler, including code generation. These attempts
have been less successfui, possibly because of the complex nature of the operations and
our less than perfect understanding of them. We do not study them in detail in this text.

More recent advances in compiler design have included the following. First, com-
pilers have included the application of more sophisticated algorithms for inferring
and/or simplifying the information contained in a program, and these have gone hand
in hand with the development of more sophisticated programming languages that allow
this kind of analysis. Typical of these is the unification algorithm of Hindley-Milner
type checking, used in the compilation of functional languages. Second, compilers have
become more and more a part of a window-based interactive development environ-
ment, or IDE, that includes editors, linkers, debuggers, and project managers. So far
there has been little standardization of such IDEs, but the development of standard win-
dowing environments is leading in that direction. The study of such topics is beyond
the scope of this text (but see the next section for a brief description of some of the com-
ponents of an IDE). For pointers to the literature, see the Notes and References section
at the end of the chapter. Despite the amount of research activity in recent years,
however, the basics of compiler design have not changed much in the last 20 years, and
they have increasingly become a part of the standard core of the computer science
curriculum.

12 PROGRAMS RELATED TO COMPILERS

In this section, we briefly describe other programs that are related to or used together
with compilers and that often come together with compilers in a complete language
development environment. (We have already mentioned some of these.)

INTERPRETERS

An interpreter is a language translator like a compiler. It differs from a compiler in
that it executes the source program immediately rather than generating object code
that is executed after translation is complete. In principle, any programming lan-
guage can be either interpreted or compiled, but an interpreter may be preferred to
a compiler depending on the language in use and the situation under which transla-
tion occurs. For example, BASIC is a language that is more usually interpreted than

1.1 Programs Related to Compilers 5

compiled. Similarly, functional languages such as LISP tend to be interpreted.
Interpreters are also often used in educational and software development situations,
where programs are likely to be translated and retranslated many times. On the
other hand, a compiler is to be preferred if speed of execution is a primary consid-
eration, since compiled object code is invariably faster than interpreted source code,
sometimes by a factor of 10 or more. Interpreters, however, share many of their
operations with compilers, and there can even be translators that are hybrids, lying
somewhere between interpreters and compilers. We will discuss interpreters inter-
mittently, but our main focus in this text will be on compilation.

ASSEMBLERS

An assembler is a translator for the assembly language of a particular computer. As
we have already noted, assembly language is a symbolic form of the machine lan-
guage of the computer and is particularly easy to translate. Sometimes, a compiler
will generate assembly language as its target language and then rely on an assem-
bler to finish the translation into object code.

LINKERS

Both compilers and assemblers often rely on a program called a linker, which col-
lects code separately compiled or assembled in different object files into a file that
is directly executable. In this sense, a distinction can be made between object
code—machine code that has not yet been linked—and executable machine code.
A linker also connects an object program to the code for standard library functions
and to resources supplied by the operating system of the computer, such as mem-
ory allocators and input and output devices. It is interesting to note that linkers now
perform the task that was originally one of the principal activities of a compiler
(hence the use of the word compile—to construct by collecting from different
sources). We will not study the linking process in this text, since it is extremely
dependent on the details of the operating system and processor. We will also not
always make a clear distinction between unlinked object code and executable code,
since this distinction will not be important for our study of compilation techniques.

LOADERS

Often a compiler, assembler, or linker will produce code that is not yet completely
fixed and ready to execute, but whose principal memory references are all made rel-
ative to an undetermined starting Iocation that can be anywhere in memory. Such
code is said to be relocatable, and a loader will resolve all relocatable addresses rel-
ative to a given base, or starting, address. The use of a loader makes executable
code more flexible, but the loading process often occurs behind the scenes (as part
of the operating environment) or in conjunction with linking. Rarely is a loader an
actual separate program.

PREPROCESSORS

A preprocessor is a separate program that is called by the compiler before actual
translation begins. Such a preprocessor can delete comments, include other files,
and perform macro substitutions [a macro is a shorthand description of a repeated
sequence of text). Preprocessors can be required by the language (as in C) or can
be later add-ons that provide additional facilities (such as the Ratfor preprocessor
for FORTRAN).

CHAPTER 1 / INTRODUCTION

EDITORS

Compilers usually accept source programs written using any editor that will pro-
duce a standard file, such as an ASCII file. More recently, compilers have been bun-
dled together with editors and other programs into an interactive development envi-
ronment, or IDE. In such a case, an editor, while still producing standard files, may
be oriented toward the format or structure of the programming language in ques-
tion. Such editors are called structure based and already include some of the oper-
ations of a compiler, so that, for example, the programmer may be informed of
errors as the program is written rather than when it is compiled. The compiler and
its companion programs can also be called from within the editor, so that the pro-
grammer can execute the program without leaving the editor.

DEBUGGERS

A debugger is a program that can be used to determine execution errors in a com-
piled program. It is also often packaged with a compiler in an IDE. Running a pro-
gram with a debugger differs from straight execution in that the debugger keeps
track of most or all of the source code information, such as line numbers and names
of variables and procedures. It can also halt execution at prespecified locations
called breakpoints as well as provide information on what functions have been
called and what the current values of variables are. To perform these functions, the
debugger must be supplied with appropriate symbolic information by the compiler,
and this can sometimes be difficult, especially in a compiler that tries to optimize
the object code. Thus, debugging becomes a compiler question, which, however, is
beyond the scope of this book.

PROFILERS

A profiler is a program that collects statistics on the behavior of an object program
during execution. Typical statistics that may be of interest to the programmer are
the number of times each procedure is called and the percentage of execution time
spent in each procedure. Such statistics can be extremely useful in helping the pro-
grammer to improve the execution speed of the program. Sometimes the compiler
will even use the output of the profiler to automatically improve the object code
without intervention by the programmer.

PROJECT MANAGERS

Modern software projects are usually so large that they are undertaken by groups of
programmers rather than a single programmer. In such cases, it is important that the
files being worked on by different people are coordinated, and this is the job of a
project manager program. For example, a project manager should coordinate the
merging of separate versions of the same file produced by different programmers.
It should also maintain a history of changes to each of a group of files, so that coher-
ent versions of a program under development can be maintained (this is something
that can also be useful to the one-programmer project). A project manager can be
written in a language-independent way, but when it is bundled together with a com-
piler, it can maintain information on the specific compiler and linker operations
needed to build a complete executable program. Two popular project manager pro-
grams on Unix systms are sces (source code control system) and res (revi-
sion control system),

1.3 The Transtation Process 7

13 THE TRANSLATION PROCESS

Figure 11
The phases of a compiler

A compiler consists internally of a number of steps, or phases, that perform distinct
logical operations. It is helpful to think of these phases as separate pieces within the
compiler, and they may indeed be written as separately coded operations although in
practice they are often grouped together. The phases of a compiler are shown in Fig-
ure 1.1, together with three auxiliary components that interact with some or all of

Source Code

Literal
Table

Symbol
Table

Error
Handier

Target Code

