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INTRODUCTION TO THE
THEORY OF COMPUTATION



PREFACE

TO THE STUDENT
Welcome!

You are about to embark on the study of a fascinating and important subject: the
theory of computation. It comprises the fundamental mathematical properties of
computer hardware, software, and certain applications thereof. In studying this
subject we seek to determine what can and cannot be computed, how quickly,
with how much memory, and on which type of computational model. The subject
has obvious connections with engineering practice, and, as in many sciences, it
also has purely philosophical aspects.

Iknow that many of you are looking forward to studying this material but some
may not be here out of choice. You may want to obtain a degree in computer sci-
ence or engineering, and a course in theory is required—God knows why. After
all, isn’t theory arcane, boring, and worst of all, irrelevant?

To see that theory is neither arcane nor boring, but instead quite understand-
able and even interesting, read on. Theoretical computer science does have many
fascinating big ideas, but it also has many small and sometimes dull details that
can be tiresome. Learning any new subject is hard work, but it becomes easier
and more enjoyable if the subject is properly presented. My primary objective in
writing this book is to expose you to the genuinely exciting aspects of computer
theory, without getting bogged down in the drudgery. Of course, the only way
to determine whether theory interests you is to try learning it.

xi
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Theory is relevant to practice It provides conceptual tools that practitioners
use in computer engineering. Designing a new programnung language fora spe-
cialized application? What you learned about grememars in this course comes in
handy. Dealing with string searching and pattern matching? Remember finite
automata and regular expressions. Confronted with a problem that seems to re-
quire more computer time than you can afford? Think back to what you learned
about NP-completeness. Various application areas, such as modern cryptographic
protocols, rely on theoretical principles that you will learn here.

Theory also is relevant to you because it shows you a new, simpler, and more
elegant side of computers, which we normally consider to be complicated 'ma-
chines. The best computer designs and applications are conceived with elegance
in mind. A theoretical course can heighten your aesthetic sense and help you
build more beautiful systems.

Finally, theory is good for you because studying it expands your mind. Com-
puter technology changes quickly. Specific technical knowledge, though useful
today, becomes outdated in just a few years. Consider instead the abilities to
think, to express yourself clearly and precisely, to solve problems, and to know
when you haven’t solved a problem. These abilities have lasting value. Studying
theory trains you in these areas.

Practical considerations aside, nearly everyone working with computers is cu-
rious about these amazing creations, their capabilities, and their limitations. A
whole new branch of mathematics has grown up in the past 30 years to answer
certain basic questions. Heres a big one that remains unsolved: If I give you a
large number, say, with 500 digits, can you find its factors (the numbers that di-
vide it evenly), in a reasonable amount of time? Even using a supercomputer, no
one presently knows how to do that in all cases within the lifetime of the universe!
The factoring problem is connected to certain secret codes in modern cryptosys-
tems. Find a fast way to factor and fame is yours!

TO THE EDUCATOR

This book is intended as an upper-level undergraduate or introductory graduate
text in computer science theory. It contains a mathematical treatment of the sub-
ject, designed around theorems and proofs. I have made some effort to accom-
modate students with little prior experience in proving theorems, though more
experienced students will have an easier time.

My primary goal in presenting the material has been to make it clear and in-
teresting. In so doing, I have emphasized intuition and “the big picture” in the
subject over some lower level details.

For example, even though I present the method of proof by induction in Chap-
ter 0 along with other mathematical preliminaries, it doesn't play an important
role subsequently. Generally I do not present the usual induction proofs of the
correctness of various constructions concerning automata. If presented clearly,
these constructions convince and do not need further argument. An induction
may confuse rather than enlighten because induction itself is a rather sophisti-
cated technique that many find mysterious. Belaboring the obvious with an in-
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duction risks teaching students that mathematical proof is a formal manipulation
instead of teaching them what is and what is not a cogent argument.

A second example occurs in Parts 1T and 11, where I describe algorithms in
prose instead of pseudocode. I don’t spend much time programming Turing ma-
chines (or any other formal model). Students today come with a programming
background and find the Church-Turing thesis to be self-evident. Hence I don't
present lengthly simulations of one model by another to establish their equiva-
lence.

Besides giving extra intuition and suppressing some details, I give what might
be called a classical presentation of the subject material. Most theorists will find
the choice of material, terminology, and order of presentation consistent with
that of other widely used textbooks. I have introduced original terminology in
only a few places, when I found the standard terminology particularly obscure
or confusing. For example I introduce the term mapping reducibility instead of
many—one reducibility.

Practice through solving problems is essential to learning any mathematcal
subject. In this book, the problems are organized into two main categories called
Exercises and Problemns. The Exercises review definitions and concepts. The Prob-
lems require some ingenuity. Problems marked with a star are more difficult. I
have tried to make both the Exercises and Problems interesting challenges.

THE CURRENT EDITION

Introduction to the Theory of Computation first appeared as a Preliminary Edition in
paperback. The current edition differs from the Preliminary Edition in several
substantial ways. The final three chapters are new: Chapter 8 on space complex-
ity; Chapter 9 on provable intractability; and Chapter 10 on advanced topics in
complexity theory. Chapter 6 was expanded to include several advanced topics
in computability theory. Other chapters were improved through the inclusion of
addidonal examples and exercises.

Comments from instructors and students who used the Preliminary Edition
were helpful in polishing Chapters 0~7. Of course, the errors they reported have
been corrected in this edition.

Chapters 6 and 10 give a survey of several more advanced topicsin computabil-
ity and complexity theories. They are not intended to comprise a cohesive unit
in the way that the remaining chapters are. These chapters are included to allow
the instructor to select optional topics that may be of interest to the serious stu-
dent. The topics themselves range widely. Some, such as Turing reducibility and
alternation, are direct extensions of other concepts in the book. Others, such as
decidable logical theories and cryptography, are brief introductions to large fields.

FEEDBACK TO THE AUTHOR

The internet provides new opportunities for interaction between authors and
readers. I have received much e-mail offering suggestions, praise, and criticism,
and reporting errors for the Preliminary Edition. Please continue to correspond!
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I try to respond to each message personally, as time permits. The e-mail address
for correspondence related to this book is

sipserbook@math.mit.edu.

A web site that contains a list of errata is maintained. Other material may be
added to that site to assist instructors and students. Let me know what you would
like to see there. The location for that site is

http://www-nath.mit.edu/ sipser/book.html .
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INTRODUCTION

Let’s begin with an overview of thdse areas in the theory of computation that we
> Iy p ‘
present in this course. Then, you’ll have a chance to learn and/or review some

mathematical concepts that you will need later.

O] # & E ¥ 22 WS ¥ K E R P EY S 4G D% ® % 8 REYTHEE
.

AUTOMATA, COMPUTABILITY, AND COMPLEXITY

This book focuses on three traditionally central areas of the theory of computa-
tion: automata, computability, and complexity. They are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began
to explore the meaning of computation. Technological advances since that time
have greatly increased our ability to compute and have brought this question out
of the realm of theory into the world of practical concern.

In each of the three areas—automata, computability, and complexity—this
question is interpreted differently, and the answers vary according to the inter-
pretation. Following this introductory chapter, we’ll explore each area in a sep-
arate part of this book. Here, we introduce these parts in reverse order because
starting from the end you can better understand the reason for the beginning.
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COMPLEXITY THEORY

Computer problems come in different varieties; some are easy and some hard.
For example, the sorting problem is an easy one. Say that you need to arrange
a list of numbers in ascending order. Even a small computer can sort a million
numbers rather quickly. Compare that to a scheduling problem. Say that you
must find a schedule of classes for the entire university to satisfy some reasonable
constraints, such as that no two classes take place in the same room at the same
time. The scheduling problem seems to be much harder than the sorting prob-
lem. If you have just a thousand classes, finding the best schedule may require
centuries, even with a supercomputer.

What makes some problems computationally hard and others easy?

This is the central question of complexity theory. Remarkably, we don’t know
the answer to it, though it has been intensively researched for the past 25 years.
Later, we explore this fascinating question and some of its ramifications.

In one of the important achievements of complexity theory thus far, re-
searchers have discovered an elegant scheme for classifying problems according
to their computational difficulty. It is analogous to the periodic table for classify-
ing elements according to their chemical properties. Using this scheme, we can
demonstrate a method for giving evidence that certain problems are computa-
tionally hard, even if we are unable to prove that they are so.

You have several options when you confronta problem that appears to be com-
putationally hard. First, by understanding which aspect of the problem is at the
root of the difficulty, you may be able to alter it so that the problem is more easily
solvable. Second, you may be able to settle for less than a perfect solution to the
problem. In certain cases finding solutions that only approximate the perfect one
is relatively easy. Third, some problems are hard only in the worst case situation,
but easy most of the time. Depending on the application, you may be satisfied
with a procedure that occasionally is slow but usually runs quickly. Finally, you
may consider alternative types of computation, such as randomized computation,
that can speed up certain tasks.

One applied area that has been affected directly by complexity theory is the
ancient field of cryptography. In most fields, an easy computational problem is
preferable to a hard one because easy ones are cheaper to solve. Cryptography
is unusual because it specifically requires computational problems that are hard,
rather than easy, because secret codes should be hard to break without the secret
key or password. Complexity theory has pointed cryptographers in the direction
of computationally hard problems around which they have designed revolution-
ary new codes.

COMPUTABILITY THEORY

During the first half of the twentieth century, mathematicians such as Kurt
Godel, Alan Turing, and Alonzo Church discovered thar certain basic problems
cannot be solved by computers. One example of this phenomenon is the problem
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of determining whether a mathematical statement is true or false. This task is the
bread and butter of mathematicians. It seems like a natural for solution by com-
puter because it lies strictly within the realm of mathematics. But no computer
algorithm can perform this task.

Among the consequences of this profound result was the development of ideas
concerning theoretical models of computers that eventually would help lead to
the construction of actual computers.

The theories of computability and complexity are closely related. In complex-
ity theory, the objective is to classify problems as easy ones and hard ones, whereas
in computability theory the classification of problems is by those that are solvable
and those that are not. Computability theory introduces several of the concepts
used in complexity theory.

AUTOMATA THEORY

Automata theory deals with the definitions and properties of mathematical mod-
els of computation. These models play a role in several applied areas of computer
science. One model, called the finite automaton, is used in text processing, com-
pilers, and hardware design. Another model, called the context-free grammar, is
used in programming languages and artificial intelligence.

Automata theory is an excellent place to begin the study of the theory of com-
putation. The theories of computability and complexity require a precise defi-
nition of a computer. Automata theory allows practice with formal definitions of
computation as it introduces concepts relevant to other nontheoretical areas of
computer science.

0.2 @B EEEANE SRR BY RN kTR NS AN
MATHEMATICAL NOTIONS AND TERMINOLOGY

As in any mathematical subject, we begin with a discussion of the basic mathe-
matical objects, tools, and notation that we expect to use.

SETS

A set is a group of objects represented as a unit. Sets may contain any type of
object, including numbers, symbols, and even other sets. The objects in a set are
called its elements or rmembers. Sets may be described formally in several ways.
One way is by listing its elements inside braces. Thus the set

{7,21,57}

contaips the elements 7, 21, and 57. The symbols € and ¢ denote set membership
and nonmembership, respectively. We write 7 € {7,21,57} and 8 ¢ {7,21,57}.
For two sets A and B, we say that A is a subset of B, written A C B, if every



