o
SEIR#&ETIEAS - REIR

miB AT nemas

Building Systems
from Commercial Components

EER4E - C - EL/R#E [KurtC. Wallnau |
BT Er4S - A - FFE48 [ScottA Hissam]
B{a45 - C - 5= [Robert C. Seacord]

i_ SEI - IRME - BEIE

| \
miel WEHTT mws

s - C- B/RiE [Kurt C. Walinau |
Hi ST 4% - A - 8543 [ScottA Hissam] &
T4k - C - EHEE [Robert C. Seacord |

WEXFHEH

(5 FBEF 1588
ER-R
AR A A A TR R 7 ke, P R A A
TRNb T 3% B0 A 850 2 R R 13 3 A N B 20U 192 AN) 5 418 SN B SR BB 7
AN, BRRE. RAMNA T SN ROKRG TRER. ik s
LA IR T BRI BRI SERRFF R PR AR
FEEGHHENFEAEANFTRGTTR TR LR,

Building Systems from Commercial Components

Kurt C. Wallnau, Scott A. Hissam, Robert C. Seacord

Copyright © 2002 by Addison-Wesley

Original English language edition published by Addison-Wesley.

All right reserved.

No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher. For sale in
the People’s Republic of China Only.

AHHENRRE Addison Wesley IEAUAE X F HARM K TT, REHEES
EiFA, FAEUFAAREHIREBHEMEBT.

LtE=HERBEENESERIDS: B 01-2002-1585 5

FRALFRA, ERENLS.
A HEMA FEREHREHARHIRE, TRESETEHE.

A A aE iR

[3%] FE/RSF « C o BL/RVE, WTEIEE - A - H758, PR -C- Ewil
EHEREHIRYE JLREERFEFEH AR, B4 100084)
http://www.tup.tsinghua.edu.cn

A BHRENRI T

FHEBELEIRRITE

787X 960 1/16 Ep3k. 2675 M 1
200248 BE 1R 20024 8 A% 1 IRELA

ISBN 7-302-05754-0/TP » 3401

0001~4000

: 49.00 7T

ABNPRIE R A REFIEAPEE X ZITHE

B W
H
5

=i
S E kB R

Mo HSHED

& & & Ir

AP EEHAFTRE - BE
FHMHETEMARM (SEI) MER
TR, BEERENEREENFE
ENETBRER

SEIfYCOTS R M B /\4H fa 37
3313 A 78 B 4B 1 2 17 o) UM 3%
BEmB, fEAETAHASFNAX
TIERITFHBIRKCMU/MSEREE,
MNEHFRMAFRIEORE.

TZERXRFNEIHE, REIF
NBHERFRXEE ., ftLockheed
Martinfif = fii X T W /2 5] A Bell
AtlanticiB{E /A S BEFEM B fa =7
A

ELRVERMETFRER. KB
Enterprise JavaBeans, CORBA X
Web$y A, &2 22X Consortium

(Xth<) FIBM & K /40 B9 B

palil

H R 3 B

1984 &£, XEEGFHREFHAE - BEBEXFRIKGT
& B %X BT (Software Engineering Institute, f& #% SEI). SEI T 1986
£F FF 14 BF 5 8 44 1t 78 BB o A B B B &Y (Capacity Maturity Model,
CMM), 1991 EER#EH T CMM 1.0 AR ,1993 F#H CMM 1.1
MR .36 JS . SELiE 52 AR T BB 77 B % B #E &Y 8 B (Capability Maturity
Model Integration, & # CMMI). E#, CMM20RE&# H.

CMM B HHLR&ERXE, £ LREBEMBRA/AT
FERNA, RABRERHEATRGEFREEXRTFHNEESSRE
B, FRAKG IR HENELRE. CMM BRIRREKMHR
BW—fER, —HREXKGIERINER. EARHGTL
MEBRET - ARIHERE, REEXGFIERIRTNFAL
B.

SEI T LEMHARNTEIRE, FREEHSEIZTEHRAL
EWBEEEFXEHARERN SEI M4 TEMNH (SEI Series In

Software Engineering) .

HMBEBREKGALUNESS, REERFRENKF, £
SBREN AT IAEABEERFHEEAXARN, 2EIETEE
A, FHEONBEFHR, XELABRRFRRAUR, A8
Mk, REWHE, BEEREEARERATEIRRKATE
REBBREEA.

B 5

AETHARMA BRI NE RN TR AMEFLEER, HF
BEXMEREEART K.

Wl Lt - EXTETAGHN R THMOBHE, A&
MEREITESRENKGAGFRREMNTE. EHE. £X
FHETHAMAN R IAEKBTRAATOAN . IHHFRRIE
FAHCHMmY. HREFAAHTRTHOHRE, B, A
HMHEEXAOSEELER. AFHAGERERATNAM U,
X TR ERGEE —HERBAR.

LWETHAGNRT TEEFEXLEFENAE L, X&iH
BARMNMBEAEXE, HRSLEHEMERBIRD. Rt T
FEEH. FAABRMNBHAARERERIT ARSI HRGIEE
77 i .

o LRUAMKHAR, FARAFHNAHSHREELR
MA—%EH ERaE. EKAEFES R E T RE
B, mMAhE XA4EOM AN EGSRITEFT R
sk, WFRATIRIMRRE, XEFRTARME
REEZFERHKRN, BERRIAFERIBAEBRIAREN
EM

o HANHAHKMHRNMNEERITRBERETEH. X8
REAE: REREHSMAAG TN, AFBRHKT
Hatmshes @fzmmAnE. ERGETERLT,
FEHMBETHERRAEBOAT. XEIBHERNOE
W, M EERAREAFRERREDTENKME R
TER .

BRNBERTR T ETAGANRITTENRAR, EXBAR
GRHUERHBETREANERASRTFEEIRYT ANE
c Bk, —BGHAMARIEE, XHEROTFEREAS
BHKT.

ETHHOFEREKACERATT 15%, FACLERUK
B FTRE, GERESR, Bl XAKBEETERL.
HEWNE. MEREEF. FAERRE. MERS. WEB I
HWEANRSE. BEFERRL. "FREEETEREURKAR
2, ENBFERGAHNERE, REDHLFHIT #.
XA, XEREHEATXAIIR, RAN_HEHBX,
RIS E, H—ABFEONMER, HAXHFE=ZTHERK.

i
t33

vive SEIRMIERSE FHFK

BUNGEKHAMFNTIERE. ANBREXHE, EHRXEL
SR —BNRAAEEREREIMFAR. BOAIEAGFURK
BHEETZ Y MEEEV BB R . Szyperski FMBFEWE
EhDPHBUNRAXIAMNA, LEZXNAFELFANETHHTFE.
Szyperski X FHBH MW REEEBRXEE L (BHFAFAEE£R) i
Ww. 5HHEK, BRINIXEFEANAATHERAECEF
EW%R,ﬁﬁ*@ﬁﬁ#ﬁ@ﬁ\ﬁﬁg%m%QMﬁ\%
EHAMGERBULRELHA .

RO HEKGIRITNEARMAENRIEBTRBET
EE—R., BARHNE BLULRAAFERF=ATEHNONA,
XEARAKAER, SRTHRGFEHHROBR.

(1) Al SaAtR_RERY. TAGTHRIE, IHK
ABEHELAN. REAGFEFAKUETHACNNERE
ATHREMESBOENE. X TFTXEAFENEERTHIERAAR
TR .

(2) L HHAHERSATAM. wEFH, BRERSIME
RMEEEAGN —LHEE, SEREXTAFDIALES
BEFE XK, FEXEHFEE (RRERBERHE) ZEH
ALBMERT BB BEE.

(3) Wl HGEAKFRETRBEN. DAIAFHFEUMER
Fg, HANESERMH T XL RO ES, AAEBLM
BAB . A4S RKEESRE, FERFEETAHR
BFHEOBRBEETEN.

EWBEIL RSN BRI T KA M4 KX R KB A
BXTFTHRERARE - AHEFIENBERUERLEALRER,
TRXABERREEKER T HERERM. BRFAETAMN
KFRF RSy R R L AnTHORE, FURMESRN
FE¥ MBI EFROE T,

FiEF LrgE R

EEHEH—AROEEREERETAGRRAERT T, R
76k = 5 8 43R, 3K B AR & B 4R R 04T B SR R OR
OEERE R MAEAN. EROXMAR, ETFAMFNRRT
ﬁﬁ*ﬁ%ﬂﬁﬂﬁ%ﬁ?ﬂ&ﬁﬂ%ﬂﬁoﬁmﬁﬁﬁ&*
() BARXHEREFHINEERAN.

EHMAEERGENGREKEFETENRBREL B
wE, XHASBRAEEZSRAARBEARLE, BRARATHY
HREAWFHMR. Lk, —HE, EZAHKRATHE, &
NEBFAER: »—rE, EX4EIRFE, XTHHHOE

B AL ERELE B v e

HHRARGESN, BIABRENOREBEMARBEEN. XEHERSE
BMu g g - LERZRUNER, URETHAHRNTR
BELHERN. FL LA RUABETEREERBTFAER.
W, BAEA AR ERBILRENAT. — MBS
MELE, WREFELBHATHE, FEZRE+TEEN.

THRERNEFEZ EREN - ERLER.

(D) RICAHERREER T EMPORITHE. ER
BEBTAGEBIHNESR, FEHRNIFNESHERR
AMAFEEBIERERDIATHERNANFES LR CXREER
B

(2) RMBEBEREBR Y —AERMOBITFS. ERHERT
EXHEBRBROOMAR, FE, EEENRE, BRTHEHRIA
miEy., BERATFE -ARTRERSMH R RETHEL.

(3) WTRBEHTRBEE XERRKEUATERAE, BA]
BAT—ARBEHNMERTE, 245 R WL EGENAH
BARURBSIERROTTE, RIOESIAT —ANREBATE,
% R e

(4 BEERROLRARE S, RIMOIATRITZHHMK
S, BrTROBSH TFREERZ MM E, EHEARE
WM T HT RO, AmFAEHRA. A IERR
MAAHBRAENEReBER I R BER.

& B 7 v 2 b i B A DT X e 7 ol 4 T 3 R B Bk
B. E—FHEBLEBR TR -—FHBEEONIE, -0
HHFEEAANFEXNARABRENBRARAETFRITLR, FH
FHAERELEQRITAR. RIUOERE, XBHFITROTET
DL TH 33X A Bk A%

R BR

BINTWEREER®. P A EHFERRBRXA XL, WK
BREEN A TRERBHTHONEE LOSRE. BRETHE,
RNAEEAXEHROAR, FEHNABEARESAMT
GENFHENKE L. RNOB_-AEFREAMBAUN
I S kR B T B R . RRATIA kX TR T K AL O IR
MR, XEHFENEASRELENER. RNHWELH
R M—ARTEXPORAETHR, XNARARBTR
MEFE - AABLVRENHANER ., AL XL, ¥
R T B A e, LRI RN B O R B R BT R OR K
A

cvie SEIRHBIEAS - HFK

FHEMEFRR

APEEMENESETHAAZETAKOARE ARLES
FTRUELIBELNEE. REAFHANETRIRATHNRE
RUEFANGER, CRNZRERTEREARANE .

EHEGIHIm-ERB AL, TUAEBFREERERR.
ERBEMERRATTHETEOEAR, URMMRGE T B
MERMmmR, B RHZAMED, REAUREHER
BMEKWEE. BXLZRET, ROASIEELBRIWEL,
HEBERELATRAARMEANETARNRE.

AIEM: ZARTMEELERIMS EOTEYE, T
IRMMEEALRFIBERENTAE. NRTWUAER, £
RMABURENZANAELARAEES REATBEHNR.
BITRIWES A R KA A By SRR R KN
* .

MEGE: FEYEERAZBIAMBORE, URNARE
ExHRAK, kAR TR (RPZ—HRKRAN HEHBRE
AREFBEXHEE. R ZHAHETEERBBRA TR
X RAQMMNHE, FARET MR, BLEMAR
AR TR TRE BRI URRE.

EREEAE: MRSV EREE B mpLAHEHR. XHX
mis . KN ANRENRKERAMBREST S, BEL L,
HEAEMMNE, XHEALBAREFRARPINEI DR, BF
EREERAXEHRNFTERSAERBESATEEEARL
i B

ABHEATRAEIEMABRFR EETAHNRATR
h, —BOFRARLATENEL XE, MERNRDKEFK
ARBREBABENEHR T A, XEABERBFRARARLN
WHEREELZENR TR EHNZAMEREIN.

AHFEFE

ABRBE=ZAET:

o FHIMAWRTHBELAEFRMNE: BET HUN
WMXERBOKETERER: ROARXEERESS
BENFRIEBPE, Wi T THERER

o BIMAB—ATHEIEMNATTHR, XLRANE
1998 EREM—AWE. X—HANE—EHHERT

AL EESR -FTE -vii *

RV AFFRORBU L ZLEHETABBOIAR.

o FNMMWHRNMAEHABRUPOEREGH T —LRY.
BRERETHAHANARER, RIABBEHT —EHR.

FIENFATHETAFFREIFTHRNGE . 2 55
B AEMBT AN GADERFRETEFRERBORNY.
B S EHNRTAFERRANER. XLHMSWEFER, F1H
BREAL. WHTHREARITARORE, B 6 EEXTH
BEA, 18RS EWRTHNASHNEEMEHEXES.
BEARHEMET IR, B—BIPWKRTFTEFTHRT —2RAHE
MEAR (BRMBARNZE - SEREK) AUFRETHAHANR
G, xEEHWTUUEEOMFERE. SOTUERTILE
W, ZHEIEXARAHEREFTEREREIILEY,

EEPFATHRT —RANEH, XEETVHRRIM4H
MG, BmERETHEBINFRNEXERY, TBRASRT
BXBEETHAENEADNN. ERXLEHFHXRM BN,
B 14 BERAMGIN, ERBTEXLAREVEMBRE (PKD A
A HBENEENR. WRELBLTHREX PKI KHR, WU
iz, AN, SERFERN L ZBELUEHEHRT BRI
il iR

To my wife, Jeannemarie, and to my children, Zachary, Victoria, Gemma,
and Bryn. You were all beginning to suspect that | wou!d never finish the
book. So was |. Without your love and support, | never would have.

—KW

| deeply want to thank my wife Jackie for her patience and support in the
authoring of this book, she had to endure some of the early chapters and
now knows more about PKI than she ever wanted to. | also want to thank
my sons, Derek and Zachery, for showing me how to build systems from
Legos! Love and thanks to them as they give reason to everything | do.
—SH

| would like to acknowledge my family for supporting my efforts in writing
this book. My wife Rhonda, whose encouragement and support was
essential, and my daughter Chelsea and my son Jordan without whom

everything would be meaningless.
—tCs

Preface

There is a real and growing gap between the theory and practice of component-
based software design.

There are, of course, books on component-based design. However, these
books assume that the design task is to develop specifications for software com-
ponents when most component-based design relies on preexisting components.
There is room for both perspectives. However, preexisting components introduce
new and novel design challenges, and their use is becoming increasingly promi-
nent. Pre-existing components mean preexisting component specifications, and
these are constraints on—not artifacts of—a design.

Current component-based design methods are focused on the less interest-
ing and less encountered design problem. The more common and more interest-
ing aspects of the design process are those that are no longer under the control of
the designer.

» Use of preexisting components involves a completely different class of
design problem than arises from component specification. Preexisting com-
ponents involve the designer in selection decisions, while the freedom to
define component interfaces involves the designer in optimization decisions.
The difference between these classes of design problem are only graduaily
becoming evident to software engineers, and design methods have not yet
caught up with this growing awareness.

= Use of preexisting components involves a significant loss of control over
fundamental design decisions: how a system is partitioned into components,
what functionality is provided by components, and how components coordi-
nate their activities. In software engineering theory, these are architectural
(that is, design) decisions. This leads to the mistaken conclusion that aggres-
sive use of preexisting components is antithetical to, or at least incompatible
or disjunctive with, software design.

We have described briefly the state of component-based design methods
today, but have not yet supported the assertion that there is a growing gap
between the theory and practice of component-based development. In fact, the
gap does exist and is self-evident, once you know where to look for it.

The trend toward component-based development has been well under way
for more than fifteen years, and has its roots in the commercial software market-
place. Software products, such as relational database management systems, trans-
action monitors, message brokers, event managers, encryption services, Web

XV

xvi Preface

browsers and servers, geographic information systems, product data management
systems, ad infinitum, all satisfy the essential criteria of software component, at
least as this term is coming to be understood by industry. That is, they all are
implementations of functionality, are in binary form, are independently deployed,
are described by a programmatic interface, and support third-party integration.
The commercial marketplace is the primary source of software components.
This is true today, and will remain so for the indefinite future. Indeed, we believe
that components and the software component marketplace are inextricably
linked. Szyperski, in his influential book, shares this belief by observing that a
component must be defined to fill a market niche [Szyperski 98]. However,
Szyperski’s notion of market was largely (aithough not completely) metaphorical.
In contrast, our use of the term component market refers to something that demon-
strably exists today, complete with component suppliers, component infrastruc-
ture providers, third-party component integrators, and, ultimately, consumers.
Ignoring the effects of the marketplace on software engineering would be
analogous to ignoring the effects of friction on mechanical engineering. In partic-
ular, there are three qualities of commercial software components that together
account for a significant share of the challenges posed by software components.

1. Commercial software components are complex. This complexity is needed
to justify and sustain a component market. Many components are suffi-
ciently complex that even experts in their use do not know all their features.
There are invariably unknowns about component features and behavior.

2. Commercial sofiware components are idiosyncratic. Standards are useful,
but innovative features attract consumers. This means component knowl-
edge is vendor-specific, and integration difficulties arise due to mismatches
among innovative (that is, nonstandard) features.

3. Commercial software components are unstable. New features must be intro-
duced to motivate upgrade, and are needed where competitors have copied
successful features. Component knowledge has a short half-life, and design
assumptions based on component features are fragile.

These qualities of software components, as they are found in the practice of
building real systems, confound the assumptions of an orderly process that
underlie traditional software design methods. However, these new complexities
require a methodological response, since all component-based roads lead to the
commercial component marketplace.

Methodological Response

A central proposition of our approach is that a principal source of risk in component-
based design is a lack of knowledge about how components should be integrated,
and how they behave when integrated. To mitigate this risk, component-based

Preface xvii

design inherently involves exploration and discovery. Acquiring and sustaining
technology (component) competence is a principal motivation for this exploration.

This proposition may appear to some to be a heretical departure from the
canons of software process improvement, which emphasize management skills
over technical skills, and collective behavior over individual contributions.
Indeed, phrases such as “that’s just plumbing” in reference to component integra-
tion details, and “we need to get beyond individual heroics” in reference to reli-
ance on software engineers with extraordinarily deep technology competence, are
indicative of a mismatch between perceptions of what is important in software
process, and the reality of what is needed in component-based development. In
fact, the feasibility of a design is often dependent on “plumbing.” Moreover, the
overall design conception often depends on these low-level details. And there is
no escaping the fact that deep technology competence is essential if these details
are to be mastered.

The following are core elements of our methodological response:

1. We introduce component ensemble as a fundamental design abstraction.
Ensembles expose component dependencies, and shift the emphasis from
selecting individual components to selecting sets of components that work
together (that is, ensembles).

2. We introduce blackboards as a fundamental design notation. Blackboards
depict what is currently known about an ensemble and, just as important,
what remains to be discovered. Blackboards serve to document a design and
known areas of design risk.

3. We introduce a risk-driven discovery process, called R®, for exposing design
risk, and for defining ensemble feasibility criteria. We also introduce a pro-
totyping process, called model problems, for generating situated component
expertise, and for establishing ensemble feasibility.

4. We introduce the design space, defined in terms of ensemble relations and
predicates. The design space captures dependencies among ensembles that
arise in response to anticipated market events such as new component
releases, and design hedges where ensemble feasibility is in doubt.

The methodological challenge is to meet the challenge posed by the com-
mercial component market without allowing a) the design process to degenerate
into an exercise in hacking, and b) innovative but unstable technology features to
dominate a design and result in excessive and unnecessary design risk. The
approach we prescribe, we believe, meets this challenge.

xviii Preface

About This Book

GOALS OF THIS BOOK

Our goals are straightforward. Our first goal is to show that software components
pose new methodological challenges for software engineering. In making this
argument, we hope to clarify the nature of these challenges, with particular
emphasis on those challenges rooted in the dynamics of the component market.
Our second goal is to describe, in detail, processes and techniques that respond to
these challenges. We believe these processes and techniques are a necessary
foundation for any methodological response to software components. Our final
goal is to illustrate, in a realistic case study drawn from our own experience in
developing a large enterprise system, the complexity of component-based design,
and the efficacy of our proposed processes and techniques.

INTENDED AUDIENCE

This book is intended for individuals participating in a component-based devel-
opment effort, and for students of software engineering. Although the whole of
the book provides useful information for all of these roles, emphasis may vary.

System Architect. The lead designer will find ensembles, and the techniques
for reasoning about ensemble repair and feasibility, welcome additions to his or
her repertoire. The design space provides the system architect the conceptual lan-
guage for managing the many layers of contingency and repair that characterize
complex component-based systems.

Chief Engineer. While the system architect is responsible for the conceptual
integrity of a design, the chief engineer is responsible for demonstrating its feasi-
bility in practice. The chief engineer will find the R® and model problem pro-
cesses essential to exposing latent design risks that are otherwise masked by the
complexity of components and their interactions.

Project Manager. Project management is concerned first and foremost with
identifying and mitigating project risk. The aggressive search for technical risk
that drives R® (one of the Rs is Risk Identification) meets these concerns. The
design space provides a concise snapshot of the status of a design, and provides a
structure for allocating and tracking engineering effort versus project objectives.

Chief Technology Officer (CTO). Modemn enterprise systems are universally
composed from commercial components. Such large-scale and long-lived sys-
tems never leave the design phase and, in fact, inhabit all phases of the develop-
ment life cycle at all times. The CTO will find all of the concepts and techniques
we describe useful for managing technology refresh.

Preface Xix

Software Engineers and Programmers. The frontline developer is the true
unsung hero of component-based development. Project success depends upon
developers to remain current with technology trends. This book provides ammu-
nition for developers who wish to convince their management to invest in tech-
nology training in addition to the usual process training.

HOW TO READ THIS BOOK
This book has three parts, as follows:

= Part [explores the engineering challenges posed by commercial compo-
nents. We describe engineering techniques that meet these challenges, and
describe, wherever possible, workflows for incorporating these techniques
into an enclosing development process.

* Part II presents an extended case study of a project that we were involved
with starting in 1998. Each chapter illustrates the challenges posed by com-
mercial components and the techniques used to meet these challenges.

= Part III provides advice on how to get started using the techniques described
in this book. We also dust off our crystal ball and make predictions about the
future of component-based development.

Chapter 1 introduces the problems inherent in component-based develop-
ment. Chapters 2 through 4 explain why it is necessary to abandon as unwork-
able some of the more staid precepts of software process. Chapter 5 describes
component ensembles and blackboards, both essential concepts in their own right
and for the material presented in this book. Chapter 6 defines process models for
exploratory design and design risk reduction. Chapters 7 and 8 describe how
design documentation developed by these processes can be managed and reused,
respectively. The remaining chapters in Part I describe specific techniques (really,
families of techniques) for developing component-based systems. These can be
read in any order; you can also skip these and head straight for the case study and
return to the techniques as needed.

The case study describes a chain of events and so these chapters are linked
by a running narrative. However, the chapters are designed to be relatively stand-
alone, although the motivation for the work described in each chapter may be less
than clear if you read them out of order. Chapter 14, which provides a mini-tuto-
rial on public key infrastructure (PKI) and security, is one exception. If you
already understand PKI, skip this chapter. Otherwise, you will need to read it to
understand the details of the case study.

ACKNOWLEDGMENTS

First, the authors wish to express their gratitude to Daniel Plakosh, David Carney,
and Fred Long for their contribution of chapters in this book. We also owe a debt

XX Preface

of gratitude to our manager, John Foreman, for his strong support for this book,
without which we would not have succeeded.

We are also grateful to the reviewers of this book whose insightful com-
ments are reflected throughout our work: Santiago Comella-Dorda, Judith
Stafford, Paul Clements, Tom Shields, Hans Polzer, Will Tracz, Alan Brown, and
John Dean. We also happily acknowledge the intellectual contributions of mem-
bers of the SEI COTS-Based Systems project not already mentioned: Howard
Slomer, Wilfred Hansen, Patricia Oberndorf, Cecilia Albert, Lisa Brownsword,
Edwin Morris, John Robert, and Patrick Place.

Special thanks go to our in-house editor, Len Estrin, for his excellent editing
under a tight deadline. Also, Peter Gordon from Addison-Wesley deserves our
thanks for agreeing to publish this work, and for his timely interventions to keep
things on track.

Last, the authors are indebted to the Software Engineering Institute (SEI) for
providing an unparalleled environment for conducting research in software engi-
neering practice. In particular, we want to acknowledge our tireless librarians
Karola Yourison, Shiela Rosenthal, and Terry Ireland. We offer special thanks to
Steve Cross, the Director of the SEI, for his enthusiastic endorsement of the ideas
expressed in this book.

