?é

RN SEA%HETR

(ZR3hR - SBSHR)

Dt Drented and Chssical
Soltare Enginegrng

(%) Stephen R. Schach &

*ﬂWIlLtH#ﬁ%i FOfE H R #
China Machine Press !’ CITIC PUBLISHING HOUSE Hill

HEMRSZARE1E

(IR - SBShR)

Stephen R. Schach: Object-Oriented and Classical Software Engineering, Fifth

Edition(ISBN 0-07-239559-1).

Copyright ©2002 by The McGraw-Hill Companies,Inc.All rights reserved.

Jointly published by China Machine Press and CITIC Publishing House/McGraw-
Hill. This edition may be sold in the People's Republic of China only.This book cannot be re-

exported and is not for sale outside the People's Republic of China.

A5 32 IR AR S R McGraw- Hill 2 5] SEAUHUR T ll B RORE R (5 S ARAE7E A B KB
BAMRHREAT, REHREFT, NMEUEMTRDFE . EHRY R RITAEHS .
RRARBT A, RAVLST,

AEHRENEIAS. BE¥F: 01-2001-5203

BMHEEREE (CIP) ¥iE

EFIR S EMRG TR BV (£) YH (Schach, S.R.) #F. - b5 I T HAR
#, 2002.8

(ZHFRRHE)
HHB I : Object-Oriented and Classical Software Engineering, Fifth Edition

ISBN 7-111-10843-4
. @& .Y M ®wETER-FEXL N.TP311LS
o E R A B HECIPREE 7 (2002) H0631835

DU Tolk R AL (LR ERE E A AR 25 BEBUAIS 100037)
THiEHE: 4F

5 B AZ W ED Rl T ekl - BB AT EAT
20024E8 5 8 LIRS 1R EpRY

787mm x 1092mm1/16 - 40.5EP3K

EN¥L: 0 001-3 000/

EH: 59.000T

A, WHEER. BT, 80, hEtRTHER

To Sharon, David, and Lauren

PRrREFACE

The fourth edition of this book was published in two versions, one with code examples presented in C++
and the other in Java. However, software engineering essentially is language independent, and in any event,
there are relatively few code examples in this book. Accordingly, in this edition, I made every effort to smooth
over language-dependent details and ensure that the code examples are equally clear to C++ and Java users.
For example, instead of using cout for C++ output and System.out.println for Java output, I utilized the
pseudacode instruction print. (The one exception is the new case study, where complete implementation
details are given in both C++ and Java.) Therefore, the fifth edition can be considered a unification of the
two versions of the fourth edition.

Pedagogics is the theme of the fifth edition. All through this book, I added material to highlight key
aspects of each chapter. For example, there are How to Perform boxes that summarize important techniques
such as object-oriented analysis and object-oriented design. In addition, new synopses and outlines assist both
the student and the instructor. Also, to provide additional material on how to perform the various techniques
of software engineering, the case study in this edition is presented in greater detail than in the fourth edition.

The fourth edition included a chapter entitled “Teams and the Tools of Their Trade.” As part of the stress
on pedagogics in this new edition, the material has been updated and split into two, to focus more clearly on
each of the separate underlying topics. In this edition, Chapter 4 is devoted to teams, whereas the tools used
by software engineers are described in Chapter 5.

As before, I include both classical and object-oriented material, notwithstanding the virtually unanimous
agreement that the object-oriented paradigm is superior to the classical (structured) paradigm. My decision
might surprise some readers; surely an up-to-date software engineering textbook should describe only the
object-oriented paradigm and treat the classical paradigm, at best, as a historical footnote.

This is not the case. Despite the widespread enthusiasm for the object-oriented paradigm and the rapidly
accumulating evidence of its superiority over the classical paradigm, it nevertheless is essential to include
material on the classical paradigm. There are three reasons for this. First, it is impossible to appreciate
why object-oriented technology is superior to classical technology without fully understanding the classical
approach and how it differs from the object-oriented approach.

The second reason why both the classical and object-oriented paradigms are included is that technology
transfer is a slow process. The vast majority of software organizations have not yet adopted the object-oriented
paradigm. It therefore is likely that many of the students who use this book will be employed by organizations
that still use classical software engineering techniques. Furthermore, even if an organization is using the
object-oriented approach for developing new software, existing software still has to be maintained, and this
legacy software is not object oriented. Therefore, excluding classical material would not be fair to many of
the students who use this text.

A third reason for including both paradigms is that a student who is employed at an organization con-
sidering the transition to object-oriented technology will be able to advise that organization regarding both
the strengths and the weaknesses of the new paradigm. So, as in the previous edition, the classical and
object-oriented approaches are compared, contrasted, and analyzed.

The fourth edition was the first software engineering textbook to utilize the Unified Modeling Language
(UML), which was introduced shortly before that edition was published. In the intervening three years, UML
has been formally standardized and become so widely used that any textbook that does not use UML to

XV

PREFACE

describe object-oriented analysis and design immediately would be obsolete. There-
fore, I continue to use UML for object-oriented analysis and object-oriented design,
as well as wherever diagrams depict objects and their interrelationships.

Another then-new topic introduced into the fourth edition was design patterns.
As with UML, design patterns now are part of mainstream software engineering. The
material on design patterns therefore has been retained and strengthened.

A new topic in this edition is extreme programming (XP). XP still is controversial,
but I feel that students need an overview of the topic so they can decide for themselves
whether XP is merely a fad or a genuine major breakthrough in software engineering.

In the previous edition, I stressed the importance of documentation, maintenance,
reuse, portability, testing, and CASE tools. In this edition, all these concepts are
stressed equally firmly. It is no use teaching students the latest techniques unless they
appreciate the importance of the basics of software engineering.

As in the fourth edition, particular attention is paid to object-oriented life-cycle
models, object-oriented analysis, object-oriented design, management implications
of the object-oriented paradigm, and the testing and maintenance of object-oriented
software. Metrics for the object-oriented paradigm also are included. In addition, there
are many briefer references to objects, a paragraph or even only a sentence in length.
The reason is that the object-oriented paradigm is not just concerned with how the
various phases are performed but rather permeates the way we think about software
engineering. Object technology pervades this book.

The software process still is the concept that underlies the book as a whole. To
control the process, we have to be able to measure what is happening to the project.
Accordingly, the emphasis on metrics is retained. With regard to process improvement,
the material on the capability maturity model (CMM) and ISO/IEC 15504 (SPICE)
has been updated, and material on ISO/IEC 12207 has been added.

As in the fourth edition, this book contains over 600 references. I selected current
research papers as well as classic articles and books whose message remains fresh
and relevant. There is no question that software engineering is a rapidly moving field
and that students therefore need to know the latest results and where in the literature
to find them. At the same time, today’s cutting-edge research is based on yesterday’s
truths, and I see no reason to exclude an older reference if its ideas are as applicable
today as they originally were.

With regard to prerequisites, it is assumed that the reader is familiar with one
high-level programming language such as Pascal, C, C++, Ada, BASIC, COBOL,
FORTRAN, or Java. In addition, the reader is expected to have taken a course in data
structures.

How tHE Firth Epimon Is OrcaNiZED

Like the fourth edition of this book, the fifth edition is written for both the traditional
one-semester and the newer two-semester software engineering curriculum. In the
traditional one-semester (or one-quarter) course, the instructor has to rush through
the theoretical material to provide the students the knowledge and skills needed for

PREFACE

the term project as soon as possible. The need for haste is so that the students can
commence the term project early enough to complete it by the end of the semester.
To cater to a one-semester, project-based software engineering course, Part 2 of this
book covers the life cycle, phase by phase, and Part 1 contains the theoretical material
needed to understand Part 2. For example, Part 1 introduces the reader to CASE,
metrics, and testing; each chapter of Part 2 contains a section on CASE tools for
that phase, a section on metrics for that phase, and a section on testing during that
phase. Part 1 is kept short to enable the instructor to start Part 2 relatively early in
the semester. Furthermore, the last two chapters of Part 1 (Chapters 8 and 9) may be
postponed and taught in parallel with Part 2. The class then can begin developing the
term project as soon as possible.

We turn now to the two-semester software engineering curriculum. More and
more computer science and computer engineering departments are realizing that the
overwhelming preponderance of their graduates find employment as software en-
gineers. As a result, many colleges and universities introduced a two-semester (or
two-quarter) software engineering sequence. The first course is largely theoretical
(but almost always there is a small project of some sort). The second course consists
of amajor team-based term project, usually a capstone project. When the term project
is in the second course, there is no need for the instructor to rush to start Part 2.

Therefore, an instructor teaching a one-semester (or one-quarter) sequence using
the fifth edition covers most of Chapters 1 through 7, then starts Part 2 (Chapters 10
through 16). Chapters 8 and 9 can then be taught in parallel with Part 2 or at the end
of the course, while the students are implementing the term project. When teaching
the two-semester sequence, the chapters of the book are taught in order; the class now
is fully prepared for the team-based term project they will develop in the following
semester.

To ensure that the key software engineering techniques of Part 2 truly are un-
derstood, each is presented twice. First, whenever a technique is introduced, it is
illustrated by means of the elevator problem. The elevator problem is the correct size
for the reader to be able to see the technique applied to a complete problem, and it
has enough subtleties to highlight both the strengths and weaknesses of the technique
being taught. Then, the relevant portion of the new case study is presented toward the
end of each chapter. This detailed solution provides the second illustration of each

technique.

Tur ProBrLEm Sits

As in the previous edition, there are four types of problems. First, the end of each
chapter contains a number of exercises intended to highlight key points. These exer-
cises are self-contained; the technical information for all the exercises can be found
in this book.

Second, there is a software term project. It is designed to be solved by students
working in teams of three, the smallest number of team members that cannot confer
over a standard telephone. The term project comprises 16 separate components, each

PREFACE

tied to the relevant chapter. For example, design is the topic of Chapter 13, so in that
chapter the component of the term project is concerned with software design. By
breaking a large project into smaller, well-defined pieces, the instructor can monitor
the progress of the class more closely. The structure of the term project is such that
an instructor may freely apply the 16 components to any other project that he or she
chooses.

Because this book is written for use by graduate students as well as upper-class
undergraduates, the third type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen; wherever
possible, a paper related to object-oriented software engineering has been selected.
The student is asked to read the paper and answer a question relating its contents.
Of course, the instructor is free to assign any other research paper; the For Further
Reading section at the end of each chapter includes a wide variety of relevant papers.

The fourth type of problem relates to the case study. This type of problem was first
introduced in the third edition in response to instructors who feel that their students
learn more by modifying an existing product than by developing a product from
scratch. Many senior software engineers in the industry agree with that viewpoint.
Accordingly, each chapter in which the case study is presented has at least three
problems that require the student to modify the case study in some way. For example,
in one chapter the student is asked to redesign the case study using a different design
technique from the one used for the case study. In another chapter, the student is asked
what the effect would have been of performing the steps of the object-oriented analysis
in a different order. To make it easy to modify the source code of the case study, it is
available on the World Wide Web at www.mhhe.com/engcs/compsci/schach. The
web site also has transparency masters for all the figures in this book, as well as a
complete set of PowerPoint lecture notes.

The Instructor’s Solution Manual contains detailed solutions to all the exercises,
as well as to the term project. The Instructor’s Solution Manual is available from

McGraw-Hill.

AcCKNOWLIDGMENTS

I am indebted to those who reviewed this edition, including:

Arvin Agah (University of Kansas)

Thaddeus R. Crews, Jr. (Western Kentucky University)
Eduardo B. Fernandez (Florida Atlantic University)

Michael Godfrey (Cornell University)

Scott Hawker (University of Alabama)

Thomas B. Horton (Florida Atlantic University)

Gail Kaiser (Columbia University)

Laxmikant V. Kale (University of Illinois)

Helene Kershner (University of Buffalo)

Chung Lee (California State Polytechnic University at Pomona)

PREFACE

Richard A. Lejk (University of North Carolina, Charlotte)
Susan A. Mengel (Texas Technological University)
David S. Rosenblum (University of California at Irvine)
Shmuel Rotenstreich (George Washington University)
Wendel Scarbrough (Azusa Pacific University)

Gerald B. Sheble (Iowa State)

Jie We (City University of New York)

David Workman (University of Central Florida)

I thank two individuals who made contributions to earlier books. First, Jeff Gray
once again made numerous insightful suggestions. In particular, I am grateful for his
many ideas regarding Chapter 8. Also, he once again is a coauthor of the Instructor’s
Solution Manual. Second, my son David has made a number of helpful contributions
to the book and again is a coauthor of the Instructor’s Solution Manual.

Since 1999, I have been involved in joint research with Dr. Amir Tomer of
RAFAEL and the Technion, Israel Institute of Technology. The papers we wrote
together are nominally on maintenance. However, the issue underlying our research
is the nature of software engineering. A direct consequence of working with Amir
is that I gained new insight into software engineering. I have incorporated many of
these ideas into this edition.

Turning now to my publisher, McGraw-Hill, I am truly grateful to executive
editor Betsy Jones and developmental editor Emily Gray for their assistance from
start to finish. I particularly appreciate their suggestions regarding giving equal stress
to both C++ and Java in an integrated volume. Rick Hecker was the ideal project
manager in every way. I was most fortunate to have Gnomi Schrift Gouldin as the
copy editor for this book. She greatly improved the readability of my manuscript, and
I am grateful for her many suggestions.

I would like to thank the many instructors from all over the world who sent me
e-mail concerning the fourth edition. I am exceedingly appreciative of their sugges-
tions, comments, and criticisms. I look forward with anticipation to receiving instruc-
tors’ feedback on this edition also. My e-mail address is srs@vuse.vanderbilt.edu.

Students, too, have been most helpful. First, I thank my students at Vanderbilt
for their many questions and comments, both inside and outside the classroom. I also
an most grateful for the provocative questions and constructive suggestions e-mailed
me by students from all over the world. I look forward keenly to student feedback on
this edition, too.

Finally, as always, I thank my family for their continual support. When I started
writing books, my limited free time had to be shared between my young children and
my current book project. Now that my children are adults and work with me on my
books, writing has become a family activity. For the tenth time, it is my privilege to
dedicate this book to my wife, Sharon, and my children, David and Lauren, with love.

Stephen R. Schach

Brier CONTENTS

Preface xv Chapter 9
Planning and Estimating 257

PART 1
Introduction to Software PART 2

Engineering 1 The Phases of the Software
Life Cycle 289 ,

Chapteor 1
The Scope of Software Engineering 3 chapter 10

Chapter 2 Requirements Phase 290

The Software Process 30 Chapter 11
Chapler 3 Specification Phase 319
Software Life-Cycle Models 64 Chapter 12

Chapter 4 Objected-Oriented Analysis
Teams 90 Phase 366

Chapter 5 Cl--.rior 13

The Tools of the Trade 106 Design Phase 395
Chapter 6 Chapter 14

Testing 136 Implementation Phase 434
Chapter 7 Chapter 13

From Modules to Objects 167 Implementation and

Integration Phase 474
Chapter 8

Reusability, Portability, Chapter 16
and Interoperability 212 Maintenance Phase 493

vi BRIEF CONTENTS

Appendix A

Broadlands Area Children’s
Hospital 513

Appendix B

Software Enéineering
Resources 518

Appendix ¢

Air Gourmet Case Study:
C Rapid Prototype 52

Appendix D

Air Gourmet Case Study:
Java Rapid Prototype 521

Appendix I

Air Gourmet Case Study:
Structured Systems Analysis 522

Appendix F

Air Gourmet Case Study:
Software Project Management
Plan 529

Appendix ¢

Air Gourmet Case Study:
Object-Oriented Analysis 534

Appendix H

Air Gourmet Case Study:
Design for C++ Implementation 535

Appendix 1

Air Gourmet Case Study:
Design for JavaImplementation 560

Appendix J

Air Gourmet Case Study:
Black-Box Test Cases 582

Appendix K

Air Gourmet Case Study:
C++ Source Code 58

Air Gourmet Case Study:
Java Source Code 589

Bibliography 590
Author Index 617
Subject Index 623

CONTENTS

Preface xv

PART 1

Introduction to Software
Engineering 1

The Scope of Software
Engineering 3

1.1 Historical Aspects 4

1.2 Economic Aspects 7

1.3 Maintenance Aspects §

1.4 Specification and Design Aspects 13
1.5 Team Programming Aspects 15
1.6 The Object-Oriented Paradigm 17
1.7 Terminology 21

Chapter Review 23

For Further Reading 24

Problems 25

References 26

Chapteor 2
The Software Process 30

2.1 Client, Developer, and User 32
22 Requirements Phase 33
221 Requirements Phase Testing 34
222 Requirements Phase
Documentation 35
23 Specification Phase 35
23.1 Specification Phase Testing 37
232 Specification Phase
Documentation 38
24 Design Phase 38
24.1 Design Phase Testing 39
242 Design Phase
Documentation 40

vii

25 Implementation Phase 40

2.5.1 Implementation Phase
Testing 40
252 Implementation Phase

Documentation 40
2.6 Integration Phase 41
26.1 Integration Phase Testing 41
2.6.2 Integration Phase
Documentation 42
2.7 Maintenance Phase 42
2.7.1 Maintenance Phase Testing 43
2.7.2 Maintenance Phase
Documentation 43
2.8 Retirement 43
2.9 Problems with Software Production:
Essence and Accidents 44
29.1 Complexity 45
292 Conformity 47
293 Changeability 48
294 Invisibility 49
29.5 No SilverBullet? 50
Improving the Software Process 51
Capability Maturity Models 51
Other Software Process
Improvement Initiatives 54
Costs and Benefits of Software
Process Improvement 55
Chapter Review 57
For Further Reading 58
Problems 59
References 60

2.10
2.1
2.12

2.13

Chapter 3
Software Life-Cycle Models 64

3.1 Build-and-Fix Model 64
3.2 Waterfall Model 65
321 Analysis of the
Waterfall Model 68

viil CONTENTS

33 Rapid Prototyping Model 70
33.1 Integrating the Waterfall and
Rapid Prototyping Models 71
34 Incremental Model 72
34.1 Analysis of the
Incremental Model 73
35 Extreme Programming 75
3.6 Synchronize-and-Stabilize Model 77
3.7 Spiral Model 78
3.7.1 Analysis of the Spiral Model 82
38 Object-Oriented
Life-Cycle Models 82
39 Comparison of Life-Cycle Models 84
Chapter Review 86
For Further Reading 86
Problems 87
References 87

Chapter 4
Teams 90

4.1 Team Organization 90
4.2 Democratic Team Approach 92
4.2.1 Analysis of the Democratic
Team Approach 93
43 Classical Chief Programmer
Team Approach 93
4.3.1 The New York Times Project 95
432 Impracticality of the
Classical Chief
Programmer Team Approach 96
44 Beyond Chief Programmer
and Democratic Teams 97
4.5 Synchronize-and-Stabilize Teams 101
4.6 Extreme Programming Teams 102
Chapter Review 103
For Further Reading 104
Problems 104
References 105

Chapteor 58
The Tools of the Trade 106

5.1 Stepwise Refinement 106

5.1.1 Stepwise Refinement Example 107
52 Cost—Benefit Analysis 113
53 Software Metrics 114

54 CASE 115
5.5 Taxonomy of CASE 116
5.6 Scope of CASE 118
5.7 Software Versions 122
5.7.1 Revisions 122
5.7.2 Variations 123
5.8 Configuration Control 124
5.8.1 Configuration Control during
Product Maintenance 126
5.82 Baselines 127
5.83 Configuration Control during
Product Development 127
59 Build Tools 128
5.10 Productivity Gains with
CASE Technology 129
Chapter Review 131
For Further Reading 131
Problems 132
References 133

Chapter 6
Testing 136

6.1 Quality Issues 137
6.1.1 Software Quality Assurance 137
6.1.2 Managerial Independence 138
6.2 Nonexecution-Based Testing 139
6.2.1 Walkthroughs 139
6.2.2 Managing Walkthroughs 140
6.2.3 Inspections 141
624 Comparison of Inspections
and Walkthroughs 143
6.2.5 Strengths and Weaknesses
of Reviews 144
6.2.6 Metrics for Inspections 144
6.3 Execution-Based Testing 145
6.4 What Should Be Tested? 145
6.4.1 Utility 146
6.4.2 Reliability 147
6.4.3 Robustness 147
6.4.4 Performance 148
6.4.5 Correctness 149
6.5 Testing versus Correctness Proofs 151
6.5.1 Example of a Correctness
Proof 151
6.5.2 Correctness Proof
Case Study 154

6.6

6.7

6.5.3 Correctness Proof and
Software Engineering 155
Who Should Perform

Execution-Based Testing? 158
When Testing Stops 160

Chapter Review 160
For Further Reading 161
Problems 162
References 164

Chapter 7
From Modules to Objects 167

7.1
72

7.3

7.4

15
1.6
1.7
7.8

7.9
7.10

What Is a Module? 167

Cohesion 171

7.2.1 Coincidental Cohesion 171
722 Logical Cohesion 172

723 Temporal Cohesion 173

724 Procedural Cohesion 174

725 Communicational Cohesion 174

7.2.6 Functional Cohesion 175
727 Informational Cohesion 175
7.2.8 Cohesion Example 176

Coupling 177

7.3.1 Content Coupling 178

73.2 Common Coupling 178

733 Control Coupling 180

734 Stamp Coupling 180

735 DataCoupling 182

7.3.6 Coupling Example 182

7.3.7 The Importance of Coupling 182
Data Encapsulation 184

74.1 Data Encapsulation and

Product Development 186

Data Encapsulation and

Product Maintenance 188
Abstract Data Types 194

Infromation Hiding 195

Objects 198

Inheritance, Polymorphism,

and Dynamic Binding 201

Cohesion and Coupling of Objects 203
The Object-Oriented Paradigm 204

74.2

Chapter Review 207
For Further Reading 207
Problems 208
References 209

CONTENTS

Reusability, Portability,
and Interoperability 212

8.1
82
83

84
85

8.6
8.7

88
89

8.10

8.11

Reuse Concepts 212
Impediments to Reuse 214
Reuse Case Studies 216
8.3.1 Raytheon Missile
Systems Division 216
8.3.2 Toshiba Software Factory 217
8.3.3 NASA Software 218
8.34 GTE Data Services 219
8.3.5 Hewlett-Packard 220
8.3.6 European Space Agency 221
Objects and Reuse 222
Reuse during the Design and
Implementation Phases 222
8.5.1 Design Reuse 222
852 Application Frameworks 224
8.5.3 Design Patterns 225
8.54 Software Architecture 229
Reuse and Maintenance 230
Portability 231
8.7.1 Hardware Incompatibilities 232
8.7.2 Operating Systems
Incompatibilities 233
8.73 Numerical Software
Incompatibilities 233
8.7.4 Compiler Incompatibilities 235
Why Portability? 239
Techniques for
Achieving Portability 240
8.9.1 Portable System Software 240
89.2 Portable Application
Software 241
893 Portable Data 242
Interoperability 243
8.10.1 COM 243
8.102 CORBA 244
8.10.3 Comparing COM
and CORBA 245
Future Trends in
Interoperability 245

Chapter Review 246
For Further Reading 247
Problems 248
References 250

x CONTENTS

Chapter 9
Planning and Estimating 257

9.1 Planning and the Software Process 257
9.2 Estimating Duration and Cost 259
9.2.1 Metrics for the Size
of a Product 260
92.2 Techniques of Cost
Estimation 264
923 Intermediate COCOMO 267
924 cCOCOMOI 270
92.5 Tracking Duration and
Cost Estimates 272
9.3 Components of a Software Project
Management Plan 272
94 Software Project
Management Plan Framework 274
9.5 IEEE Software Project
Management Plan 274
9.6 Planning Testing 278
9.7 Planning Object-Oriented
Projects 279
9.8 Training Requirements 280
99 Documentation Standards 281
9.10 CASE Tools for Planning
and Estimating 282
9.11 Testing the Software Project
Management Plan 282
Chapter Review 283
For Further Reading 283
Problems 284
References 285

PART 2

The Phases of the Software
Life Cycle 289

Chapter 10
Requirements Phase 290
10.1 Requirements Elicitation 291

10.1.1 Interviews 291
10.1.2 Scenarios 292

10.1.3 Other Requirements Elicitation
Techniques 293
10.2 Requirements Analysis 294
10.3 Rapid Prototyping 294
104 Human Factors 296
10.5 Rapid Prototyping as a
Specification Technique 298
10.6 Reuwsing the Rapid Prototype 300
10.7 Management Implications of the
Rapid Prototyping Model 302
10.8 Experiences with Rapid
Prototyping 304
10.9 Techniques for Requirements
Elicitation and Analysis 305
10.10 Testing during the
Requirements Phase 305
10.11 CASE Tools for the
Requirements Phase 306
10.12 Metrics for the
Requirements Phase 307
10.13 Object-Oriented Requirements? 308
10.14 Air Gourmet Case Study:
Requirements Phase 308
10.15 Atr Gourmet Case Study:
Rapid Prototype 311
10.16 Challenges of the
Requirements Phase 313
Chapter Review 315
For Further Reading 315
Problems 316
References 317

Chapter 11
Speciﬁcatiop Phase 319

11.1 The Specification Document 319
112 Informal Specifications 321
11.2.1 Case Study:
Text Processing 322
11.3 Structured Systems Analysis 323
11.3.1 Sally’s Software Shop 323
11.4 Other Semiformal Techniques 331
11.5 Entity-Relationship Modeling 332
11.6 Finite State Machines 335
11.6.1 Elevator Problem: Finite
State Machines 336

11.7 Petri Nets 341
11.7.1 Elevator Problem:
Petri Nets 343
118 Z 346
11.8.1 Elevator Problem: Z 347
11.8.2 Analysisof Z 349
119 Other Formal Techniques 351
11.10 Comparison of
Specification Techniques 352
1111 Testing during the
Specification Phase 353
11.12 CASE Tools for the
Specification Phase 354
11.13 Metrics for the
Specification Phase 355
11.14 Air Gourmet Case Study:
Structured Systems Analysis 355
11.15 Air Gourmet Case Study:
Software Project Management
Plan 357
1116 Challenges of the
Specification Phase 358
Chapter Review 358
For Further Reading 359
Problems 360
References 362

Object-Oriented
Analysis Phase 366

12.1 Object-Oriented Analysis 366
122 Elevator Problem:
Object-Oriented Analysis 369
123 Use-Case Modeling 369
124 Class Modeling 371
124.1 Noun Extraction 372
1242 CRCCards 374
125 Dynamic Modeling 375
126 Testing during the
Object-Oriented Analysis Phase 378
12.7 CASE Tools for the
Object-Oriented Analysis Phase 383
128 Air Gourmet Case Study:
Object-Oriented Analysis 383

CONTENTS xi

12.9 Challenges of the
Object-Oriented Analysis Phase 390
Chapter Review 391
For Further Reading 391
Problems 392
References 393

Chapter 13
Design Phase 395

13.1 Design and Abstraction 395
132 Action-Oriented Design 396
13.3 DataFlow Analysis 397
13.3.1 Data Flow Analysis
Example 398
13.3.2 Extensions 402
13.4 Transaction Analysis 403
13.5 Data-Oriented Design 406
13.6 Object-Oriented Design 406
13.7 Elevator Problem:
Object-Oriented Design 407
13.8 Formal Techniques for
Detailed Design 415
13.9 Real-Time Design Techniques 416
13.10 Testing during the Design Phase 418
13.11 CASE Tools for the
Design Phase 418
13.12 Metrics for the Design Phase 419
13.13 Air Gourmet Case Study:
Object-Oriented Design 420
13.14 Challenges of the Design Phase 429
Chapter Review 429
For Further Reading 430
Problems 431
References 431

Chapter 14
Implementation Phase 434

14.1 Choice of Programming Language 434
14.2 Fourth-Generation Languages 437
143 Good Programming Practice 440

144 Coding Standards 445

145 Module Reuse 446

14.6

14.7

14.8

149

14.10

14.11
14.12

14.13

14.14

14.15

14.16

14.17

CONTENTS

Module Test Case Selection 447
14.6.1 Testing to Specifications
versus Testing to Code 447

14.6.2 Feasibility of Testing
to Specifications 447

14.6.3 Feasibility of Testing
to Code 448

Black-Box Module-Testing

Techniques 451

14.7.1 Equivalence Testing and
Boundary Value Analysis 451

14.7.2 Functional Testing 452

Glass-Box Module-Testing

Techniques 454

14.8.1 Structural Testing: Statement,
Branch, and Path Coverage 454

14.8.2 Complexity Metrics 456

Code Walkthroughs and

Inspections 458

Comparison of

Module-Testing Techniques 458

Cleanroom 459

Potential Problems When

Testing Objects 460

Management Aspects of

Module Testing 463

When to Rewrite Rather than

Debug a Module 463

CASE Tools for the

Implementation Phase 465

Air Gourmet Case Study:

Black-Box Test Cases 465

Challenges of the

Implementation Phase 467

Chapter Review 467
For Further Reading 468
Problems 469
References 470

Implementation and
Integration Phase 474

15.1

Introduction to Implementation

and Integration 474

15.1.1 Top-down Implementation
and Integration 475

152
15.3
15.4
15.5
15.6
15.6

15.8
15.9

15.10
15.11

15.12

15.13

15.14

15.1.2 Bottom-up Implementation

and Integration 477

15.1.3 Sandwich Implementation

and Integration 478
Implementation and Integration
of Object-Oriented Products 480
Management Issues during the
Implementation and
Integration Phase 480
Testing during the Implementation
and Integration Phase 481
Integration Testing of Graphical
User Interfaces 481

Product Testing 482

Acceptance Testing 483

CASE Tools for the Implementation
and Integration Phase 484

CASE Tools for the Complete
Software Process 484

Integrated Environments 485
Environments for

Business Applications 486

Public Tool Infrastructures 487
Potential Problems

with Environments 487

Metrics for the Implementation

and Integration Phase 488

Air Gourmet Case Study: Implementation
and Integration Phase 488
Challenges of the Implementation
and Integration Phase 489

15.1.4

15.1.5

Chapter Review 489
For Further Reading 490
Problems 490
References 492

Chapter 16
Maintenance Phase 493

16.1
16.2

16.3
16.4

Why Maintenance Is Necessary 493
What Is Required
of Maintenance Programmers 494
Maintenance Case Study 497
Management of Maintenance . 498
16.4.1 Fault Reports 498 ‘
164.2 Authorizing Changes

to the Product 499

