B o5t B LB ZE B MRS

B 4 i) 'ﬁﬁ{ﬁ)ﬁﬁ
(C++h) (5 i)

A Practical Introduction to Data Structu
alysis, Second Edition

ST HID 1061011, ;
il

EERFR g . -

m CEREE s o = R
w T s s S £ 1 B

[£] Clifford A. Shaffer

3 2 ’ .
Prentice _ ’i*g‘ 3‘ 1% & AR 43
Hall ‘ Publishing House of Electronics Industry
—rae=a www.phei.com.cn

n B+ = & 8 B §

R TR R TR]
CC++RC) o w)

o r e e e e | Rl gy O
cod T R N T, e i T

DR

ESMTEIRFEE T RS

#:

N

SRS REESHh

(C++hR)

(885 —hi)
EXV.3Y

A Practical Introduction to Data Structures

and Algorithm Analysis
Second Edition

[£] CQlifford A. Shaffer *

T FIH & AL AL

Publishing House of Electronics Industry

JtE - BEUING

REEN

AR PR 7 B R FA B 6] 3 R C+-+iE EORMRBRE M I HHEBUR S IR B B AR A
PUE R, RENR T HEMHRENEERGHIHT RROBMHI 5 FERREERN 5B EEH
KT T3 R RA BT BPETIA T — B LR RPN 5 OB RAEAR, #4
BT ARG A — BT

IR ERBCGEAET I IA TSN, WA THEE D RRRRNERNE, BB EER.

A FHEEHRE BRIER . AR, RN K SRR RG-SRV A€ L2 A S
4, WAL TRERARSH,

English reprint Copyright © 2002 by PEARSON EDUCATION NORTH ASIA LIMITED and Publishing House of Elec—

tronics Industry.

A Practical Introduction to Data Structures and Algorithm Analysis, Second Edition by Clifford A. Shaffer. Copyright © 2001.
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

This edition is authorized for sale only in the People's Republic of China (excluding the Special Administrative Region of
Hong Kong and Macau).

A% FH Y B R ER L F Tl ASiAL F Pearson Education 3% A 8 R A R/ B S1EH IR, K2R EH
SeWEIFT, AL R E R RSB ETMES
A A3 B Pearson Education 354 8 F IR FBOLE DR 4E . RIFEEEEE,

R A S A& RIS BF: 01-2002-2623
BPEERSEE (CIP) 8iE

BESHEEEMT (C++ IR) (B (FEXFERR) /7 () 38 (Shaffer, C. A.) %,
~JbE. HF T HAREE, 2002.7

(ESMTEYRLEEH 7))

$4E3C: A Practical Introduction to Data Structures and Algorithm Analysis, Second Edition
ISBN 7-5053-7767-1

L3 L. LD BAREH - Bb - 0 QBT - B0 - XX @ CiET - BREBOT - #bt - 3
IV. TP311.12

] A B 518 CIP R (2002) 450455708

TS & M FhE

BRI & i EERIA R REL R

HRETT: BF TR hitp://www.phei.com.cn
CEMEER T AR 173 /5% B%:: 100036

% B fpedE

F A 787 x 1092 1/16 ERgk: 3325 F¥: 830 TF

B %K. 20024E7HEIRR 20024E7 HES 1 RERRI

E M 45007T

REELF L RBAAGB S, pASIRFE, FOBMELE AR, TR ELE, FHARRITHBEA, BA
3% (010) 68279077

H A iR FA

20 HEFH 5 E10ERREEREFAIHSARNERND, GEFESILRERRRXE
B EREMA WTOEMS X, B SCEMNERAESFH—WIT AT IMERERERSHEN
HEAFZ—. BERREMEATEAAORSE 5E£E, RREEX EFRESNRBXRERE.

4iT, EERERSHFHIEGEEAZSENHM TR . BENEAN, AEREHEE
-5 BRI, B R R EBR ETE A RS B R BOR IR A E S MU F 80 Fik 35 R
#hr, DEREETENSE ERE EEEBRE#EKF

BF Dl RS ERS I HESMEFEBNAE, BiRLmT “ESMTREIRIE#EM R
37 A, XESMERFPHERET . SR, BRE, BEARELIRESEM, BAHRERE
Boor, DENARBER . AR AREKEIBEXT EM TR, T RITAR B GEEMEha
AR KB EAFERITRAEMNESEE . BERS. HENHAA SN, B 5584
. BEESERAE., HBIES . ARG SEEE. RETES, R, RITUEL5I#HT—
SR F5 3 R RRBOM , A5 BHFARA PSR SCR AR H 2 A SR , 3o 2) 5 B4R B SU AR SR AR
oL B9 B RRAS

R BEE L, WINTKEEFEIEL BRA R H R B REAT, 2 Pearson Education 554: #
F AR W7 - B/RBE HRER . FREETEB AR . S5 KF RS, BEHHK
L VEEREEF R B S , BRI - BHER(Douglas E. Comer). BUSE - SFEAK William
Stallings). PA4E - BHFF/R (Harvey M. Deitel), FEH3T « AT (Uyless Black) %,

HFREM KRR R ARRRE, RINAE THERE. TR, AEMEMRKRE, &
BR¥., BBERYE, MRERYE, MITLRE, MARETIWRE. EPRH A%, MmETEE,
BB RERA RS B FE LRSS ERRBRNBRME TINS5 T AR $H 0958 . 8%
MAFRTAE I PERAHFRFERBA BTN, L, WARR T L HERE28 5283
AR,

TR B, BFENAEM T IR, AREHMEE, RIOM T KEHABNTHE,
BRI EA BT R ERE; EFRMBNRZBL WX O; MWHEAR . EPRIRE ST ™R,
X FICEA R HBAER, RITED SEEREMM L FTREBRERS IR, B—#TTEIT,

WSk, BATEH S EIE 2 HIA R SAE, REE—BF0 BF IR, # B BRI
R, 55, RITHLSEMRS FRRBUTRERR, A X045 #E ZHEIMLE M
&%, AREHENREEERR SERSFERRNENBESE S,

T T R

*

fE

7]

* M

BT

HEK

AL

REIT

iR

a8 W

(3=

HHMHMERS

JERRFEHE
Rl BB £
ARREERSIRFRERE
R RERAG TR K

FEARKFERERRK ., #8

HERETBEYNMFSERAER
EifE BAMERKE S EERETENAR

HERETEYMFSERRBE
FERITEN¥ SSRGSV ERSTE

FEARBRER TRFHER
EEMERARTR P LEE, BRI

EBEREITREYBES TRAHER
ERafmaitERRP.OEE

LEEREEERRBLEE, EERFEHR
FEHEY S HFEE, DT RIESEER

EBIRHA AR RETT B EB S8R . 4R IF
AW BN ERMRBEH AR I ZARBEERR

HFHREFERLBRF R

Preface

We study data structures so that we can learn to write more efficient programs. But
why must programs be efficient when new computers are faster every year? The
reason is that our ambitions grow with our capabilities. Instead of rendering effi-
ciency needs obsolete, the modern revolution in computing power and storage ca-
pability merely raises the efficiency stakes as we computerize more complex tasks.

The quest for program efficiency need not and should not conflict with sound
design and clear coding. Creating efficient programs has little to do with “pro-
gramming tricks” but rather is based on good organization of information and good
algorithms. A programmer who has not mastered the basic principles of clear de-
sign will not likely write efficient programs. Conversely, clear programs require
clear data organization and clear algorithms. Most computer science curricula rec-
ognize that good programming skills begin with a strong emphasis on fundamental
software engineering principles. Then, once a programmer has learned the prin-
ciples of clear program design and implementation, the next step is to study the
effects of data organization and algorithms on program efficiency.

Approach: Many techniques for representing data are described in this book.
These techniques are presented within the context of the following principles:

1. Each data structure and each algorithm has costs and benefits. Practitioners
need a thorough understanding of how to assess costs and benefits to be able
to adapt to new design challenges. This requires an understanding of the
principles of algorithm analysis, and also an appreciation for the signiticant
effects of the physical medium employed (e.g., data stored on disk versus
main memory).

2. Related to costs and benefits is the notion of tradeoffs. For example, it is quite
common to reduce time requirements at the expense of an increase in space
requirements, or vice versa. Programmers face tradeoff issues regularly in all
phases of software design and implementation, so the concept must become
deeply ingrained.

3. Programmers should know enough about common practice to avoid reinvent-
ing the wheel. Thus, programmers need to learn the commonly used data
structures and related algorithms.

4. Data structures follow needs. Programmers must learn to assess application
needs first, then find a data structure with matching capabilities. To do this
requires competence in principles 1, 2, and 3.

Using the Book in Class: Data structures and algorithms textbooks tend to fall
into one of two categories: teaching texts or encyclopedias. Books that attempt to
do both usually fail at both. This book is intended as a teaching text. I believe it is
more important for a practitioner to understand the principles required to select or
design the data structure that will best solve some problem than it is to memorize a
lot of textbook implementations. Hence, I have designed this as a teaching text that
covers most standard data structures, but not all. A few data structures that are not
widely adopted are included to illustrate important principles. Some relatively new
data structures that should become widely used in the future are included.

This book is intended for a single-semester course at the undergraduate level,
or for self-study by technical professionals. Readers should have programming ex-
perience, typically two semesters or the equivalent of a structured programming
language such as Pascal or C, and including at least some exposure to C++. Read-
ers who are already familiar with recursion will have an advantage. Students of
data structures will also benefit from having first completed a good course in Dis-
crete Mathematics. Nonetheless, Chapter 2 attempts to give a reasonably complete
survey of the prerequisite mathematical topics at the level necessary to understand
their use in this book. Readers may wish to refer back to the appropriate sections
as needed when encountering unfamiliar mathematical material.

While this book is designed for a one-semester course, there is more material
here than can properly be covered in one semester. This is deliberate and provides
some flexibility to the instructor. A sophomore-level class where students have little
background in basic data structures or analysis might cover Chapters 1-12 in detail,
as well as selected topics from Chapter 13. That is how I use the book for my own
sophomore-level class. Students with greater background might cover Chapter 1,
skip most of Chapter 2 except for reference, briefly cover Chapters 3 and 4 (but
pay attention to Sections 4.1.3 and 4.2), and then cover the remaining chapters in
detail. Again, only certain topics from Chapter 13 might be covered, depending on
the programming assignments selected by the instructor.

Chapter 13 is intended in part as a source for larger programming exercises.
I recommend that all students taking a data structures course be required to im-
plement some advanced tree structure, or another dynamic structure of comparable

difficulty such as the skip list or sparse matrix representations of Chapter 12. None
of these data structures are significantly more difficult to implement than the binary
search tree, and any of them should be within a student’s ability after completing
Chapter 5.

While I have attempted to arrange the presentation in an order that makes sense,
instructors should feel free to rearrange the topics as they see fit. The book has been
written so that, once the reader has mastered Chapters 1-6, the remaining material
has relatively few dependencies. Clearly, external sorting depends on understand-
ing internal sorting and disk files. Section 6.2 on the UNION/FIND algorithm is
used in Kruskal’s Minimum-Cost Spanning Tree algorithm. Section 9.2 on self-
organizing lists mentions the buffer replacement schemes covered in Section 8.3.
Chapter 14 draws on examples from throughout the book. Section 15.2 relies on
knowledge of graphs. Otherwise, most topics depend only on material presented
earlier within the same chapter.

Use of C++: The programming examples are written in C++, but I do not wish
to discourage those unfamiliar with C++ from reading this book. I have attempted
to make the examples as clear as possible while maintaining the advantages of C++.
C++ is viewed here strictly as a tool to illustrate data structures concepts, and in-
deed only a minimal subset of C++ is included. In particular, I make use of C++’s
support for hiding implementation details, including features such as classes, pri-
vate class members, constructors, and destructors. These features of the language
support the crucial concept of separating logical design, as embodied in the abstract
data type, from physical implementation as embodied in the data structure.

To keep the presentation as clear as possible, some of the most important fea-
tures of C++ are completely avoided here. I deliberately minimize use of certain
features commonly used by experienced C++ programmers such as class hierarchy,
inheritance, and virtual functions. Operator and function overloading is used spar-
ingly. C-like initialization syntax is preferred to some of the alternatives offered by
CH++.

While the C++ features mentioned above have valid design rationale in real
programs, they tend to obscure rather than enlighten the principles espoused in this
book. For example, inheritance is important to avoiding duplication and minimiz-
ing bugs. From a pedagogical standpoint, however, inheritance makes the code
examples harder to understand since it tends to spread data element descriptions
among several classes. Thus, my class definitions only use inheritance where in-
heritance is explicitly relevant to the point illustrated (e.g., Section 5.3.1). This
does not mean that a programmer should do likewise. Avoiding code duplication
and minimizing errors are important goals. Treat the programming examples as il-

lustrations of data structure principles, but do not copy them directly into your own
programs.

The most painful decision I had to make was whether to use templates in the
code examples. In the first edition of this book, the decision was to leave templates
out as it was felt that their syntax obscures the meaning of the code for those not
familiar with C++. In the years following, the use of C++ in Computer Science
curricula greatly expanded, and the editors and I now feel that readers of the text
are more likely than before to be familiar with template syntax. Thus, templates
are now used extensively throughout the code examples.

My C++ implementations provide concrete illustrations of data structure prin-
ciples. If you are looking for a complete implementation of a standard data structure
for use in commercial software, you should look elsewhere. The code examples are
designed explicitly to illustrate how a data structure works, as an aid to the textual
exposition. Code examples should not be read or used in isolation from the associ-
ated text since the bulk of each example’s documentation is contained in the text,
not the code. The code complements the text, not the other way around.

The code examples provide less parameter checking than is sound program-
ming practice for professional programmers. Some parameter checking is included
in the form of a call to Assert, which is a modified version of the C library func-
tion assert. The inputs to assert are a Boolean expression and a character
string. If this expression evaluates to false, then the string is printed and the
program terminates immediately. This behavior is generally considered undesir-
able in real programs but is adequate for clarifying how a data structure is meant to
operate. See the Appendix for the implementation of Assert.

I make a distinction in the text between “C++ implementations” and “pseu-
docode.” Code labeled as a C++ implementation has actually been compiled and
tested on one or more C++ compilers. Pseudocode examples often conform closely
to C++ syntax, but typically contain one or more lines of higher-level description.
Pseudocode is used where I perceived a greater pedagogical advantage to a simpli-
fied, but less precise, description. '

Most chapters end with a section entitled “Further Reading” These sections
are not comprehensive lists of references on the topics presented. Rather, I include
books and articles that, in my opinion, may prove exceptionally informative or
entertaining to the reader. In some cases I include references to works that should
become familiar to any well-rounded computer scientist.

Exercises and Projects: Proper implementation and anaysis of data structures
cannot be learned simply by reading a book. You must practice by implementing
real programs, constantly comparing different techniques to see what really works

best in a given situation. At the same time, students should also work problems
to develop their analytical abilities. I provide approximately 350 exercises and
suggestions for programming projects. I urge readers to take advantage of them.

Contacting the Author and Supplementary Materials: A book such as this
is sure to contain errors and have room for improvement. I welcome bug reports
and constructive criticism. I can be reached by electronic mail via the Internet at
shaffer@vt . edu. Alternatively, comments can be mailed to

Cliff Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, VA 24061

A set of IXTigX-based transparency masters for use in conjunction with this book
can be obtained via the WWW at URL

http://www.cs.vt.edu/ "shaffer/book.html

The C++ code examples are also available from this site. Online Web pages for
Virginia Tech’s sophomore-level data structures class can be found at URL

http://courses.cs.vt.edu/ cs2604

This book was typeset by the author with IATEX. The bibliography was pre-
pared using BIBTEX. The index was prepared using makeindex. The figures
were mostly drawn with Xfig. Figures 3.1 and 9.6 were partially created using
Mathematica.

Acknowledgments: It takes a lot of help from a lot of people to make a book.
I wish to acknowledge a few of those who helped to make this book possible, I
apologize for the inevitable omissions.

Virginia Tech helped make this whole thing possible through sabbatical re-
_ search leave during Fall 1994, enabling me to get the project off the ground. My de-
partment heads during the time I have written the various editions of this book, Den-
nis Kafura and Jack Carroll, provided unwavering moral support for this project.
Mike Keenan, Lenny Heath, and Jeff Shaffer provided valuable input on early ver-
sions of the chapters. I also wish to thank Lenny Heath for many years of stimulat-
ing discussions about algorithms and analysis (and how to teach both to students).
Steve Edwards deserves special thanks for spending so much time helping me on
the redesign of the C++ code for the second edition, and many hours of discussion
on the principles of program design. Thanks to Layne Watson for his help with
Mathematica, and to Bo Begole, Philip Isenhour, Jeff Nielsen, and Craig Struble

for much technical assistance. Thanks to Bill McQuain, Mark Abrams and Dennis
Kafura for answering lots of silly questions about C++ and Java.

I am truly indebted to the many reviewers of the various editions of this manu-
script. For the first edition these reviewers included J. David Bezek (University of
Evansville), Douglas Campbell (Brigham Young University), Karen Davis (Univer-
sity of Cincinnati), Vijay Kumar Garg (University of Texas — Austin), Jim Miller
(University of Kansas), Bruce Maxim (University of Michigan — Dearborn), Jeff
Parker (Agile Networks/Harvard), Dana Richards (George Mason University), Jack
Tan (University of Houston), and Lixin Tao (Concordia University). Without their

. help, this book would contain many more technical errors and many feweér insights.

For the second edition, I wish to thank these reviewers: Gurdip Singh (Kansas
State University), Peter Allen (Columbia University), Robin Hill (University of
Wyoming), Norman Jacobson (University of California — [rvine), Ben Keller (Vir-
ginia Tech), and Ken Bosworth (Idaho State University). In addition, I wish to
thank Neil Stewart and Frank J. Thesen for their comments and ideas for improve-
ment.

Without the hard work of many people at Prentice Hall, none of this would be
possible. Authors simply do not create printer-ready books on their own. Foremost
thanks go to Petra Recter, Laura Steele, and Alan Apt, my editors. My production
editors, Irwin Zucker for the second edition, Kathleen Caren for the original C++
version, and Ed DeFelippis for the Java version, kept everything moving smoothly
during that horrible rush at the end. Thanks to Bill Zobrist and Bruce Gregory (I
think)) for getting me into this in the first place. Others at Prentice Hall who helped
me along the way include Truly Donovan, Linda Behrens, and Phyllis Bregman. I
am sure I owe thanks to many others at Prentice Hall for their help in ways that 1
am not even aware of.

I wish to express my appreciation to Hanan Samet for teaching me about data
‘structures. 1 learned much of the philosophy presented here from him as well,
though he is not responsible for any problems with the result. Thanks to my wife
Terry, for her love and support, and to my daughters Irena and Kate for pleasant
diversions from working too hard. Finally, and most importantly, to all of the data
structures students over the years who have taught me what is important and what
should be skipped in a data structures course, and the many new insights they have
provided. This book is dedicated to them.

Clifford A. Shaffer
Blacksburg, Virginia

- 10 -

S 2RIy FREEIR coeeeereeessrenne et ‘

Preliminaries

% 1 ﬁ ﬁﬁ%mﬁﬁ% ...

Data Structures and Algorithms

% 2 E ﬁr‘%&ﬁ%ﬁ]iﬂ ..

Mathematical Perliminaries

BB AP -voeeeereeereerm e s

Algorithm Analysis

ISy BARBHBLEMY creeeereeeeeeeeesreeesneniie e

Fundamental Data Structures

%4% &:&%\ &*ﬂ%ﬁ“ ..

Lists, Stacks, and Queues

% 6 ﬁ EIF:XW ..

Non-Binary Trees

w4y HFEMBRE Ceeerreeeeieeee e e te e ae e s e saeees s e aesraas

Sorting and Searching

HETEE PIHESF -oovverroreeree s e st e e

Internal Sorting

% 8 ﬁ)‘Cﬁzia‘-ﬂjﬁ]ﬂ\mg}? ..

File Processing and External Sorting

HEQEE RQAR voeeerreeeereeme e e e e s

Searching

..................

B0 EE BB HIAR -+oorverreerere oot 327

Indexing

%m%"‘ﬁ ﬁms%z&iﬁﬂ‘ 357

Applications and Advanced Topics

% 11 ﬁ @ ... 359
Graphs

% 12 ﬁ %‘ﬁ%%ﬂﬁéﬂ%?ﬁ&* .. 393
Lists and Arrays Revisited

% 13 ﬁ Eﬁﬁ%%#@ .. 423
Advanced Tree Structures

% 14 g ﬁm& 7]¢ .. 451
Analysis Techniques

% 15 ﬁ H‘ﬁﬂ‘ll‘ﬁ%‘] ... 469
Limits to Computation

%’ E%Bﬁ m i ... 493

Appendix

]}ﬁ»i A ;,; Fﬁ &ﬁ .. 495
A Utility Functions

g%im ... 497

Bibliography

%g | ... 502

Index

- 4 -

Contents

I PRELIMINARIES

1 Data Structures and Algorithms

1.1

1.2
1.3
1.4
1.5

A Philosophy of Data Structures

1.1.1 The Need for Data Structures
1.1.2 Costs and Benefits

Abstract Data Types and Data Structures
Problems, Algorithms, and Programs
Further Reading

Exercises

2 Mathematical Preliminaries

2.1
22
23
24
25
2.6

2.7

Sets and Relations

Miscellaneous Notation

Logarithms

Recursion

Summations and Recurrences
Mathematical Proof Techniques

2.6.1 Proof by Contradiction

2.6.2 Proof by Mathematical Induction
Estimating

Pk

0w N b bW

12
15
17

21
21
25
26
28
30
34
34
35
41

- 11 -

2.8
29

3.1
3.2
3.3
34

3.5
3.6

© 37
38
39
3.10
3.11
3.12
3.13

Further Reading
Exercises

Algorithm Analysis

Introduction

Best, Worst, and Average Cases

A Faster Computer, or a Faster Algorithm?
Asymptotic Analysis

3.4.1 Upper Bounds

34.2 Lower Bounds

34.3 © Notation

344 Simplifying Rules

Calculating the Running Time of a Program
Analyzing Problems

Common Misunderstandings

Multiple Parameters

Space Bounds

Some Practical Considerations

Further Reading

Exercises

Projects

I FUNDAMENTAL DATA STRUCTURES

4 Lists, Stacks, and Queues

4.1

4.2
4.3

12 .

Lists

4.1.1 Array-Based List Implementation
4.12 Linked Lists

4.1.3 Comparison of List Implementations
4.1.4 Element Implementations

4.1.5 Doubly Linked Lists

The Dictionary ADT

Stacks

43
43

49
49
55
57
59
60
62
63
64
65
70
71
72
73
76
78
79
83

85

87
88
91
95
105
107
108
113
119

[]

ML) LB e T e

(

I d

4.4

4.5
4.6
4.7

4.3.1 Array-Based Stacks

4.3.2 Linked Stacks

4.3.3 Comparison of Array-Based and Linked Stacks
434 Implementing Recursion

Queues

4.4.1 Array-Based Queues

442 Linked Queues

4.4.3 Comparison of Array-Based and Linked Queues
Further Reading

Exercises

Projects

Binary Trees

5.1

5.2
53

54
5.5
5.6

5.7
5.8
5.9

Definitions and Properties

5.1.1 The Full Binary Tree Theorem

5.1.2 A Binary Tree Node ADT

Binary Tree Traversals

Binary Tree Node Implementations

5.3.1 Pointer-Based Node Implementations
5.3.2 Space Requirements

5.3.3 Array Implementation for Complete Binary Trees
Binary Search Trees

Heaps and Priority Queues

Huffman Coding Trees

5.6.1 Building Huffman Coding Trees
5.6.2 Assigning and Using Huffman Codes
Further Reading

Exercises

Projects

Non-Binary Trees

6.1

General Tree Definitions and Terminology
6.1.1 An ADT for General Tree Nodes

121
122
124
125
128
129
133
133
133
133
138

141
141
143
145
146
149
149
154
157
159
167
174
176
182
185
186
189

191
191
192

-13.

