SO H AR B B 55 R (s HI) |

|
e

Muhammad Ali Mazidi
Janice Gillispie Mazidi

80x86 IBM PC X
#ZiEH(E | FF)
ToiEs, Hit58E0EAR
(% 3 M)

o IEE = P l‘i‘”:nlll'lli PRENTICE-HALL’INC.
& A= ;j,\ . North Asia
=027 http://www.tup.tsinghua.edu.cn = http://www.prenhall.com

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS
VOLUMES I &1I

Assembly Language, Design and Interfacing

Third Edition

80x86 IBM PC I 3kZitEH
B 1HGE I
CHIES. ®RitSEORA
@ 3 4

Muhammad Ali Mazidi
Janice Gillispie Mazidi

7 /

BEXFEHIR Prentice-Hall, Inc.

(R) ig=x 158 5

The 80x86 IBM PC and Compatible Computers Volumes [&Il
Assembly Language, Design, and Interfacing 3rd ed.
Muhammad Ali Mazidi, Janice Gillispie Mazidi

Copyright © 2000 by Prentice Hall, Inc. Pearson Education
Original English Language Edition Published by Prentice Hall, Inc.
All Rights Reserved.

For sale in Mainland China only.

AASLENR H Prentice Hall HiAR 2 AU A% WFALE P EERN (FEEFE/IITHX.)
WATHEMEBHX) BFER. RIT.
REHMEREIFAT, THRLUEAMAR MR REHE OIS .

AHHTEMAE Prentice Hall AP HIFE, TIREETEYE,
FERTRRBEERNEREICS: EFE: 01-2002-0657

4: 80x86IBMPC R#FAMHNE | M. ILHES, Wit5BEOHR (B3

% #: M. A. Mazidi, J. G. Mazidi

HARE: BERFHRE QEREEREETI R, B4 100084)
http:// www.tup.tsinghua.edu.cn

EpRE: JERAREEIRI

RATH: FeEPIEBEIEEATH

: 880X 1230 1/16 EM5K: 63.75

2002E 6 HE 1 AR 2002 4E6 % 1 KRENRI

ISBN 7-302-04999-8/TP - 2819

0001 ~3000

85.00 7T

H

D k&
SE@yH

i i B

HEA 21 42, HAKENLF. REURGEEHORSEENKI. REFHPOEERI AL
%, EHEARBERNAL, EREEESFTRAMRY. BREHE, FHEFREERAASNE
Wb, DRZHHEEN. BNRERSETNEMEFRE, A TIREMOEFAR, BHEWIEE
KA 3 E K A B R R AT

EHERE IR 1996 TR, SESEL HIRAREE, BEOHRT “KEAEHIEFTAR (¥
R B—RFISIHES, 2R TEALENRANERS. BA 2 HE, RIFZEARENRELE
EHRBRENYIE, ECHNEMLE, #—SF XBEAE, IXEBFERY, —ugEaEhigs
X ERREER FREBRAHNEAREFENHENEIZRENRELZEMURBESES, 4
BAE “REHEHNHETESNELEM. BSRF BEBR”, URIEE. RUIHEE REHER
ERFIEN . HBOMRNERLRRARN]. EREEASE. ERRBRARIEFEESMTEHIHE
AT HM, URIRITE “X¥EAENEEEIELEM. BB R RO BBEY, EEEH
RImEMRE. .

WHEHLS R E B EE
2002.3

wwr

-

PREFACE TO THE SERIES

"I think that Intel has some of its greatest times ahead of it. That’s because they are
driving microprocessor design technology and enjoy the largest installed base of

software in the world. If you’re going to learn only one instruction set, it’s going to
be the Intel X86." *

Philippe Kahn
Founder, Borland Intemational, Inc.

It is currently estimated that there are over 100 million 80x86-based (8088,
8086, 80286, 80386, 80386SX, 80486, 80486SX, Pentium) IBM and compatible
computers in the world and this number is growing by 40 to 50 million units a year.
The alliance of Intel, IBM, and Microsoft brought about a revolution in the computer
industry by creating a unified system that became the standard for desktop comput-
ers. Intel provided the 80x86 microprocessors and Microsoft developed the DOS
operating system, but it was IBM who set the revolution in motion by making the
architecture of the PC open for cloning. In the absence of such a role by IBM, we
would have desktop computers with four or five different architectures and operating
systems, all incompatible with each other. This would have been more like the tower
of Babel than the friendly world of IBM PCs and compatibles that we have known
and enjoyed since 1981 when the first IBM PC was announced. The fact that the
newer-generation 80x86 CPUs are achieving the power of minicomputers will
assure the survival of the 80x86 well beyond the year 2000. These facts explain
why many companies such as Sun Micro and Next have made available an 80x86
version of their operating systems.

Why this series?

It is our belief that many computer hardware and software concepts are
much easier to leam if one has access to a system whereby these concepts can be
experimented with hands-on. Undoubtedly, the 80x86-based PC is the most afford-
able tool to achieve this objective. The steadily decreasing price of PCs has made
these tools available to schools, students, individuals, and small businesses.

Although there are many fine books that deal with various hardware or
software aspects of the PC, this series is designed to provide a systematic and
comprehensive introduction to both the software and hardware of the PC. We have
embarked on the task of creating this series of books which will provide a guide to
those wanting to become proficient in the PC. The range of topics selected and their
degree of coverage have been designed based on over ten years of classroom
experience introducing these concepts to students. Emphasis has been placed on
providing information in such a way as to enable the student to gain hands-on
experience quickly in order to master the concepts as they are presented.

More about this volume

Volume 1 of this series provides an introduction to Assembly language
programming on the PC, and Volume 2 covers the hardware design and interfacing
of 80x86 systems. This combined volume includes Volumes 1 and 2 in their entirety.

* "The Empire Strikes Back," Upside, June 1992, p. 42.

PREFACE TO VOLUMES I AND Il

Purpose

This combined volume is intended for use in college-level courses in which
both Assembly language programming and 80x86 PC interfacing are discussed. It
not only builds the foundation of Assembly language programming, but also
provides a comprehensive treatment of 80x86 PC design and interfacing for students
in engineering and computer science disciplines. This volume is intended for those
who wish to gain an in-depth understanding of the intemal working of the IBM PC,
PS, and 80x86 compatible computers. It builds a foundation for the design and
interfacing of microprocessor-based systems using the real-world example of the
80x86 IBM PC. In addition, it can also be used by practicing technicians, hardware
engineers, computer scientists, and hobbyists who want to do PC interfacing and
data acquisition.

Prerequisites

Readers should have a minimal familiarity with the IBM PC and the DOS
operating system in addition to having had an introductory digital course. Knowl-
edge of other programming languages would be helpful, but is not necessary.

Although a vast majority of current PCs use 386, 486, or Pentium micro-
processors, their design is based on the IBM PC/AT, an 80286 microprocessor
system introduced in 1984. A good portion of PC/AT features, hence its limitations,
are based on the original IBM PC, an 8088 microprocessor system, introduced in
1981. In other words, one cannot expect to understand fully the architectural
philosophy of the 80x86 PC and its expansion slot signals unless the 80286 PC/AT
and its subset, the IBM PC/XT, are first understood. For this reason, we describe the
8088 and 80286 microprocessors in Chapters 9 and 10. In doing so, we describe the
purpose and use of the supporting chips of the 8088, 80286 microprocessor such as
the 8288, 8284, 82288, and 82284. Although these supporting chips provide the
necessary timing for the 8088/86/286 processors, they are no longer used in later
generation 386/486/Pentium microprocessors, since their functions are incorporated
into the CPU.

Contents of Volume |

A systematic, step-by-step approach has been used in covering various
aspects of Assembly language programming. Many examples and sample programs
are given to clarify concepts and provide students an opportunity to learn by doing.
Review questions are provided at the end of each section to reinforce the main points
of the section. We feel that one of the functions of a textbook is to familiarize the
student with terminology used in technical literature and in industry, so we have
followed that guideline in this text.

Chapter 0 covers concepts in number systems (binary, decimal, and hex)
and computer architecture. Most students will have leamed these concepts in
previous courses, but Chapter 0 provides a quick overview for those students who
have not learmed these concepts, or who may need to refresh their memory.

Chapter 1 provides a brief history of the evolution of 80x86 microprocessors
and an overview of the internal workings of the 8086 as a basis of all 80x86
processors. Chapter 1 should be used in conjunction with Appendix A (a tutorial
introduction to DEBUG) so that the student can experiment with concepts being
leamed on the PC. The order of topics in Appendix A.has been designed to
correspond to the order of topics presented in Chapter 1. This allows the student to
begin programming with DEBUG without having to learn how to use an assembler.

xxxii

Chapter 2 explains the use of asscmblers to create programs. Although the
programs in the book can be used with Microsoft’s MASM assembler, any Intel-
compatible assembler such as Borland’s TASM will also do.

Chapter 3 introduces the bulk of the logic and arithmetic instructions for
unsigned numbers, plus bitwise operations and bit manipulation in C.

Chapter 4 introduces DOS and BIOS interrupts. Programs in Assembly and
C allow the student to get input from the keyboard and send output to the monitor.
In addition, interrupt programming in C is described, as well as how to put Assembly
language code in C programs.

Chapter 5 describes how to use macros to develop Assembly language
programs in a more time-efficient and structured manner. We also cover INT 33H
mouse function calls and mouse programming.

Chapter 6 covers arithmetic and logic instructions for signed numbers as
well as string processing instructions.

Chapter 7 discusses modular programming and how to develop larger
Assembly language programs by breaking them into smaller modules to be coded
and tested separately. In addition, linking Assembly language modules with C
programs is thoroughly explained.

Chapter 8 introduces some 32-bit concepts of 80386 and 80486 program-
ming. Although this book emphasizes 16-bit programming, the 386/486 is intro-
duced to help the student appreciate the power of 32-bit CPUs. Several programs
are run across the 80x86 family to show the dramatic improvement in clock cycles
with the newer CPUs.

Contents of Volume 1l

Chapter 9 describes the 8088/86 microprocessor and supporting chips in
detail and shows how they are used in the orginal IBM PC/XT. In addition, the
origin and function of the address, data, and control signals of the PC/XT expansion
slot are described.

In Chapter 10, the 80286 microprocessor and its supporting chips are
examined in detail. In addition, we examine the origin of the signals of the PC/AT
expansion slot, commonly known as the ISA bus.

Chapter 11 provides an introduction to various types of RAM and ROM
memories, their interfacing to the microprocessor, the memory map of the 80x86
PC, the timing issue in interfacing memory to the CPU, and the checksum byte and
parity bit techniques of ensuring data integrity in RAM and ROM.

Chapter 12 is dedicated to the interfacing of I/O ports, the use of IN and
OUT instructions in the 80x86, and interfacing and programming of the 8255
programmable peripheral chip. We also cover the PC Interface Trainer and Bus
Extender, which are used to interface PCs to devices for data acquisition such as
LCDs, stepper motors, ADC, DAC, and sensors. In addition, programming I/O with
C language is covered.

Chapter 13 discusses the use of the 8253/54 timer chip in the 80x86 PC, as
well as how to generate music and time delays.

Chapter 14 is dedicated to the explanation of hardware and software
interrupts, the use of the 8259 interrupt controller, the origin and assignment of IRQ
signals on the expansion slots of the ISA bus, and exception interrupts in 80x86
MiCroprocessors.

Chapter 15 is dedicated to direct memory access (DMA) concepts, the use
of the 8237 DMA chip in the 80x86 PC, and DMA channels and associated signals
on the ISA bus.

Chapter 16 covers the basics of video monitors and various video modes
and adapters of the PC, in addition to the memory requirements of various video
boards in graphics mode.

Chapter 17 discusses serial communication principles, the interfacing and
programming of National Semiconductor’s 8250/16450/16550 UART chip, Intel’s
8251 USART chip, and verifying data integrity using the CRC method.

xxxiii

Chapter 18 covers the interfacing and programming of the keyboard in the
80x86 PC, in addition to printer port interfacing and programming. In addition, a
discussion of various types of parallel ports such as EPP and ECP is included.

Chapter 19 discusses both floppy and hard disk storage organization and
terminology. We also show how to write Assembly language programs to access
files using INT 21H DOS function calls.

Chapter 20 examines the 80x87 math coprocessor, its programming and
interfacing, and IEEE single and double precision floating point data types.

Chapter 21 explores the programming and hardware of the 386 microproc-
essor, contrasts and explains real and protected modes, and discusses the implemen-
tation of virtual memory.

Chapter 22 is dedicated to the interfacing of high-speed memories and
describes various types of DRAM, including EDO, SDRAM, and Rambus, and
examines cache memory and various cache organizations and terminology in detail.

In Chapter 23 we describe the main features of the 486, Pentium, and
Pentium Pro and compare these microprocessors with the RISC processors. Chapter
23 also provides a discussion of MMX technology and how to write programs to
detect which CPU a PC has.

Chapter 24 describes the MS DOS structure and the role of CONFIG.SYS
and batch files in the 80x86 PC, the writing of TSR (terminate and stay resident)
programs, and device drivers.

Chapter 25 explains 80x86 PC memory terminology, such as conventional
memory, expanded memory, upper memory block, and high memory area, as well
as MS DOS memory management.

Chapter 26 provides an overview of IC technology including the recent
advances in IC fabrication, describes IC interfacing and system design issues, and
covers error detection and correction.

Chapter 27 is dedicated to the discussion of the various types of PC buses,
suchas ISA, EISA, USB, their performance comparisons, the local bus, and features
of the PCI local bus.

In Chapter 28 we show how to use C language to access DOS function calls,
BIOS interrupts, memory, input/output ports, and CMOS RAM of the 80x86.

Appendices

The appendices have been designed to provide all reference material
required for the topics covered in this combined volume so that no additional
references should be necessary.

Appendix A provides a tutorial introduction to DEBUG.

Appendix B provides a listing of Intel’s 8086 instruction set along
with clock cycles for 80x86 microprocessors.

Appendix C describes assembler directives with examples of their use.
Appendix D lists some commonly used DOS 21H function calls and
INT 33H mouse functions.

Appendix E lists the function calls for various BIOS interrupts.
Appendix F provides a table of ASCII codes.

Appendix G lists the I/O map of 80x86-based ISA computers.
Appendix H provides a description of the BIOS data area.

Appendix I contains data sheets for various IC chips.

Diskette

There is a diskette attached to this combined volume (Volumes I and II) that
provides the source code for programs and examples in the textbook. The files on
the diskette are in ASCII format.

Lab Manual

There i1s a lab manual for this combined volume (Volumes I and II). The
section for Volume I covers Assembly language programming using DEBUG and
assemblers such as Microsoft’'s MASM and Borland’s TASM. It includes 24 labs
covering data types, anthmetic operations, string handling, graphics programming,
32-bit programming, and macros. In addition, there are 10 advanced labs involving
more complex programming techniques such as sorting, advanced calculations, data
structures and manipulation. The section for Volume II begins by exploring system
programming using DEBUG, assemblers, and 32-bit programming features avail-
able in MicroSoft’s CodeView and Borland’s Turbo Debugger. Then it describes
how to wire-wrap a PC bus extender in order to access signals on the expansion slot.
This bus extender is used to interface devices to the PC such as LCDs and LEDs,
ADC and DAC converters, sensors, printers, and more.

Acknowledgments

This book 1s the result of the dedication, work, and love of many
individuals. Our sincere and heartfelt appreciation goes out to all of them. First, we
must thank the reviewers who provided valuable suggestions and encouragement:
Mr. William H. Shannon of the University of Maryland, Mr. Howard W. Atwell of
Fullerton College, Mr. David G. Delker of Kansas State University, Mr. Michael
Chen of Duchess Community College, Mr. Yusuf Motiwala of Prairie View A&M
University, and Mr. Donald T. Coston of ITT Technical Institute. We were truly
amazed by the depth and breadth of their knowledge of microprocessor-based
system design in general and 80x86 PC architecture in particular. We sincerely
appreciate their comments and suggestions. Some of their suggestions are incorpo-
rated in the lab book due to lack of space in this volume.

Thanks also must go to the many students whose comments have helped
shape this book, especially Daniel Woods, Sam Oparah, Herbert Sendeki, Greg
Boyle, Philip Fitzer, Adnan Hindi, Kent Keeter, Mark Ford, Shannon Looper, Mitch
Johnson, Carol Killelea, Michacl Madden, Douglas McAlister, David Simmons,
Dwight Brown, Clifton Snyder, Phillip Boatright, Wilfrid Lowe, Robert Schabel,
and the Class of *94, who helped find errors in the prepublication draft,

A word must also be said of our colleagues, especially the late Mr. Allan
Escher, whose encouragement set the making of this series into motion. For the last
25 years, his dedication and love of microprocessor education were a source of
inspiration to many. A special thanks goes to Mr. James Vignali for his enthusiasm
in discussing the intemnal intricacies of the 80x86 PC and his readiness to keep
current with the ever-changing world of the PC.

Special thanks go to Tom Selgas, Larry Tittle, and the technical support staff
of Cyrnix Corporation for thetr valuable input.

Finally, we offer our appreciation for the dedicated professionals at Prentice
Hall. Many thanks to Charles Stewart for his continued support of this series.

Acknowledgments for this edition

First, we would like to sincerely thank the following professors from some
outstanding engineering schools whose enthusiasm for the book, suggestions, and
kind words have been encouraging to us and made us think we are on the right track:
Dr. Michael Chwialkowski (Electrical Engineering Dept., University of Texas at
Arlington), Dr. Roger S. Walker (Computer Science Engineering Dept., University
of Texas at Arlington), Dr. Behbood Zoghi (Electronics Engineering Technology,
Texas A&M University).

We would also like to thank the following individuals who made suggestions
for this new edition and sent us corrections for the errors in the first edition: John
Berry, Clyde Knight, Robert Jones (all of DeVry Institute of Technolgy), Lynnette
Garetz (Heald College), Peter Woof (Southern Sydney Institute, Lidcombe College
of Tafe), M. Soleimanzadeh, Mark Lessley, Snehal Amin, Travis Erck, Gary
Hudson.

XXXV

ABOUT THE AUTHORS

Muhammad Ali Mazidi holds Master’s degrees from both Southem Meth-
odist University and the University of Texas at Dallas, and currently is completing
his Ph.D. in the Electrical Engineering Department of Southern Methodist Univer-
sity. He is a co-founder and chief researcher of Microprocessor Education Group,
a company dedicated to bringing knowledge of microprocessors to the widest
possible audience. He also teaches microprocessor-based system design at DeVry
Institute of Technology in Dallas, Texas.

Janice Gillispie Mazidi has a Master of Science degree in Computer Science
from the University of North Texas. Afier several years experience as a software
engineer in Dallas, she co-founded Microprocessor Education Group, where she is
the chief technical writer and production manager, and is responsible for software
development and testing.

The Mazidis have been married since 1985 and have two sons, Robert Nabil
and Michael Jamal.

The authors can be contacted at the following address if you have any

comments or suggestions, or if you find any errors.

Microprocessor Education Group
P.O. Box 38 1970
Duncanville, TX 75138

email: mmazidi@dal.devry.edu

A xxvi

CONTENTS AT A GLANCE

CHAPTERS

Assembly Language Programming on the iBM PC, PS, and Compatibles

INTRODUCTION TO COMPUTING 1

THE 80x86 MICROPROCESSOR 18

ASSEMBLY LANGUAGE PROGRAMMING 49

ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS 82
BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C 121
MACROS AND THE MOUSE 150

SIGNED NUMBERS, STRINGS, AND TABLES 173

MODULES; MODULAR AND C PROGRAMMING 183

32-BIT PROGRAMMING FOR 386 AND 486 MACHINES 220

BNPOARWNN—-O

Design and Interfacing of the IBM PC, PS, and Compatibles

9 8088/86 MICROPROCESSORS AND SUPPORTING CHIPS 235
10 80286 MICROPROCESSOR AND SUPPORTING CHIPS 262
11 MEMORY AND MEMORY INTERFACING 277
12 1/O, 8255, AND DEVICE INTERFACING 323
13 8253/54 TIMER AND MUSIC 386
14 INTERRUPTS AND THE 8258 CHIP 410
15 DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 447
16 VIDEO AND VIDEO ADAPTERS 477
17 SERIAL DATA COMMUNICATION AND THE 16450/8250/51 CHIPS 508
18 KEYBOARD AND PRINTER INTERFACING 541
19 FLOPPY DISKS, HARD DISKS, AND FILES 570
20 THE 80x87 MATH COPROCESSOR 600
21 386 MICROPROCESSOR: REAL vs. PROTECTED MODE 631
22 HIGH-SPEED MEMORY INTERFACING AND CACHE 659
23 486, PENTIUM, PENTIUM PRO, AND MMX 690
24 MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS 724
25 MS DOS MEMORY MANAGEMENT 740
26 1C TECHNOLOGY AND SYSTEM DESIGN 759
27 1SA, PCl, AND USB BUSES 784
28 PROGRAMMING DOS, BIOS, & HARDWARE WITH C/C++ 808

APPENDICES

A DEBUG PROGRAMMING 825

B 80x86 INSTRUCTIONS AND TIMING 847

C ASSEMBLER DIRECTIVES AND NAMING RULES 883
D DOS INTERRUPT 21H AND 33H LISTING 898

E BIOS INTERRUPTS 924

F ASCII CODES 940

G /O ADDRESS MAPS 941

H |BM PC/PS BIOS DATA AREA 952

|

DATA SHEETS 959

CONTENTS

PREFACE TO THE SERIES xxxi

PREFACE TO VOLUMES | AND Il xxxii

CHAPTER 0: INTRODUCTION TO COMPUTING 1

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Decimal and binary number systems 2
Converting from decimal to binary 2
Converting from binary to decimal 2
Hexadecimal system 3

Converting between binary and hex 4
Converting from decimal to hex 4
Converting from hex to decimal 4
Counting in base 10, 2, and 16 6
Addition of binary and hex numbers 6
2’s complement 6

Addition and subtraction of hex numbers 7
Addition of hex numbers 7
Subtraction of hex numbers 7

ASCII code 8

SECTION 0.2: INSIDE THE COMPUTER 9

Some important terminology 9

Intemnal organization of computers 9

More about the data bus 10

More about the address bus 10

CPU and its relation to RAM and ROM 11
Inside CPUs 11

Intemnal working of computers 12

SECTION 0.3: BRIEF HISTORY OF THE CPU 13
CISC vs. RISC 14

CHAPTER 1: THE 80x86 MICROPROCESSOR 18

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY

Evolution from 8080/8085 to 8086 19
Evolution from 8086 to 8088 19

Success of the 8088 19

Other microprocessors: the 80286, 80386, and 80486

SECTION 1.2: INSIDE THE 8088/8086 21

Pipelining 21
Registers 22

Assembly language programming 24
MOV instruction 24
ADD instruction 25

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

Origin and definition of the segment 27

Logical address and physical address 27

Code segment 27

Logical address vs. physical address in the code segment
Data segment 29

Logical address and physical address in the data segment
Little endian convention 31

Extra segment (ES) 32

Memory map of the IBM PC 32

More about RAM 32

Video RAM 33

More about ROM 33

Function of BIOS ROM 33

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86

What is a stack, and why is it needed? 33

How stacks are accessed 34

Pushing onto the stack 34

Popping the stack 34

Logical address vs. physical address for the stack 35
A few more words about segments in the 80x86 36
Overlapping 36

Flag register 37

Bits of the flag register 38

Flag register and ADD instruction 38

Use of the zero flag for looping 40

SECTION 1.6: 80x86 ADDRESSING MODES 41

Register addressing mode 41
Immediate addressing mode 41
Direct addressing mode 42

Register indirect addressing mode 42
Based relative addressing mode 43
Indexed relative addressing mode 43
Based indexed addressing mode 44
Segment overrides 44

19

19

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING

26

28

33

30

23

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING 49

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM 50

Model definition 50
Segment definition 51

Segments of a program 51
Stack segment b}
Data segment 51

Code segment definition 52
SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
.asm and .obj files 56

st file 56

PAGE and TITLE directives 56
.crf file 56

LINKing the program 57

.map file 57

SECTION 2.3: MORE SAMPLE PROGRAMS 57

Analysis of Program 2-1 58

Various approaches to Program 2-1 60
Analysis of Program 2-2 6!

Analysis of Program 2-3 63

Stack segment definition revisited 63

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 63

FAR and NEAR 63

Conditional jumps 64

Short jumps 64

Unconditional jumps 65

CALL statements 66

Assembly language subroutines 67

Rules for names in Asscmbly language 67

SECTION 2.5: DATA TYPES AND DATA DEFINITION 68

80x86 data types 68
Assembler data directives 68
ORG (ongin) 69

DB (define byte) 69

DUP (duplicate) 69

DW (define word) 70

EQU (equate) 70

DD (define doubleword) 71
DQ (define quadword) 71
DT (define ten bytes) 72

SECTION 2.6: FULL SEGMENT DEFINITION 73

Segment definition 73
Stack segment definition 73
Data segment definition 75
Code segment definition 75

54

SECTION 2.7: EXE VS. COM FILES 76

Why COM files? 76
Converting from EXE to COM 77

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND
PROGRAMS 82

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION 83

Addition of unsigned numbers 83

CASE 1: Addition of individual byte and word data 83
Analysis of Program 3-la 84

CASE 2: Addition of multiword numbers 85
Analysis of Program 3-2 86

Subtraction of unsigned numbers 87

SBB (subtract with borrow) 88

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION 88

Multiplication of unsigned numbers 88
Division of unsigned numbers 90

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS

AND 93

OR 93

XOR 94

SHIFT 95

COMPARE of unsigned numbers 9

IBM BIOS method of converting from lowercase to uppercase
BIOS examples of logic instructions 100

SECTION 3.4: BCD AND ASCIli OPERANDS AND INSTRUCTIONS

BCD number system 101

Unpacked BCD 102

Packed BCD 102

ASCII numbers 102

ASCII to BCD conversion 102

ASCII to unpacked BCD conversion 102
ASCII to packed BCD conversion 103
Packed BCD to ASCII conversion 104
BCD addition and subtraction 104

BCD addition and correction 104

DAA 105

Summary of DAA action 105

BCD subtraction and correction 105
Summary of DAS action 107

ASCII addition and subtraction 109
Unpacked BCD multiplication and division 110
AAM 110

AAD 110

93

99

101

e

SECTION 3.5: ROTATE INSTRUCTIONS 1M1

Rotating the bits of an operand night and left 111
ROR rotate right 111

ROL rotate left 112

RCR rotate night through carry 113

RCL rotate left through camry 113

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE 114

Bitwise operators in C 114

Bitwise shift operators in C 115

Packed BCD-to-ASCII conversioninC 116
Testing bitsin C 116

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C 121

SECTION 4.1: BIOS INT 10H PROGRAMMING 122

Monitor screen in text mode 122

Clearing the screen using INT 10H function 06H 123

INT 10H function 02: setting the cursor to a specific location 123
INT 10H function 03: get current cursor position 124
Changing the video mode 124

Attribute byte in monochrome monitors 125

Attribute byte in CGA text mode 125

Graphics: pixel resolution and color 127

INT 10H and pixel programming 128

Drawing horizontal or vertical lines in graphics mode 128
Changing the background color 129

SECTION 4.2: DOS INTERRUPT 21H 130

INT 21H option 09: outputting a string of data to the monitor 130
INT 21H option 02: outputting a single character to the monitor 130
INT 21H option 01: inputting a single character, withecho 130

INT 21H option 0AH: inputting a string of data from the keyboard 131
Inputting more than the buffer size 132

Use of carriage retur and line feed 134

INT 21H option 07: keyboard input without echo 135

Using the LABEL directive to define a string buffer 136

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING 139

Checking a key press 139
Which key is pressed? 139

SECTION 4.4: INTERRUPT PROGRAMMINGWITHC 141

Programming BIOS interrupts with C/C++ 141
Programming INT 21H DOS functions call with C/C++ 143
Accessing segment registers 144

Accessing the carry flag in int86 and intdos functions 144
Mixing C with Assembly and checking ZF 145

C function kbhit vs. INT 16H keyboard input 146

CHAPTER 5: MACROS AND THE MOUSE 150

SECTION 5.1: WHAT IS A MACRO AND HOWIIS ITUSED? 151

MACRO definition 151

Comments in a macro 152
Analysis of Program 5-1 154
LOCAL directive and its use in macros 155

INCLUDE directive 158

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H 161

INT 33H 161

Detecting the presence of amouse 161

Some mouse terminology 162

Displaying and hiding the mouse cursor 162

Video resolution vs. mouse resolution in text mode 163
Video resolution vs. mouse resolution in graphics mode 163
Getting the current mouse cursor position (AX=03) 163
Setting the mouse pointer position (AX=04) 166

Getting mouse button press information (AX=05) 166
Monitoring and displaying the button press count program 167
Getting mouse button release information (AX=06) 168
Setting horizontal boundary for mouse pointer (AX=07) 168
Setting vertical boundary for mouse pointer (AX=08) 168
Setting an exclusion (off-limits) arca for the mouse pointer (AX=10) 169
Getting mouse driver information (version) (AX=24H) 169

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES 173

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 174

Concept of signed numbers in computers 174

Signed byte operands 174

Positive numbers 174

Negative numbers 174

Word-sized signed numbers 175

Overflow problem in signed number operations 176
When the overflow flag is set in 8-bit operations 176
Overflow flag in 16-bit operations 177

Avoiding erroneous results in signed number operations 178
IDIV (Signed number division) 179

IMUL (Signed number multiplication) 180
Anthmetic shift 182

SAR (shift arithmetic right) 182

SAL (shift arithmetic left) and SHL (shift left) 182
Signed number comparison 182

xii

