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PREFACE TO THE SERIES

"I think that Intel has some of its greatest times ahead of it. That’s because they are
driving microprocessor design technology and enjoy the largest installed base of

software in the world. If you’re going to learn only one instruction set, it’s going to
be the Intel X86." *

Philippe Kahn
Founder, Borland Intemational, Inc.

It is currently estimated that there are over 100 million 80x86-based (8088,
8086, 80286, 80386, 80386SX, 80486, 80486SX, Pentium) IBM and compatible
computers in the world and this number is growing by 40 to 50 million units a year.
The alliance of Intel, IBM, and Microsoft brought about a revolution in the computer
industry by creating a unified system that became the standard for desktop comput-
ers. Intel provided the 80x86 microprocessors and Microsoft developed the DOS
operating system, but it was IBM who set the revolution in motion by making the
architecture of the PC open for cloning. In the absence of such a role by IBM, we
would have desktop computers with four or five different architectures and operating
systems, all incompatible with each other. This would have been more like the tower
of Babel than the friendly world of IBM PCs and compatibles that we have known
and enjoyed since 1981 when the first IBM PC was announced. The fact that the
newer-generation 80x86 CPUs are achieving the power of minicomputers will
assure the survival of the 80x86 well beyond the year 2000. These facts explain
why many companies such as Sun Micro and Next have made available an 80x86
version of their operating systems.

Why this series?

It is our belief that many computer hardware and software concepts are
much easier to leam if one has access to a system whereby these concepts can be
experimented with hands-on. Undoubtedly, the 80x86-based PC is the most afford-
able tool to achieve this objective. The steadily decreasing price of PCs has made
these tools available to schools, students, individuals, and small businesses.

Although there are many fine books that deal with various hardware or
software aspects of the PC, this series is designed to provide a systematic and
comprehensive introduction to both the software and hardware of the PC. We have
embarked on the task of creating this series of books which will provide a guide to
those wanting to become proficient in the PC. The range of topics selected and their
degree of coverage have been designed based on over ten years of classroom
experience introducing these concepts to students. Emphasis has been placed on
providing information in such a way as to enable the student to gain hands-on
experience quickly in order to master the concepts as they are presented.

More about this volume

Volume 1 of this series provides an introduction to Assembly language
programming on the PC, and Volume 2 covers the hardware design and interfacing
of 80x86 systems. This combined volume includes Volumes 1 and 2 in their entirety.

* "The Empire Strikes Back," Upside, June 1992, p. 42.




PREFACE TO VOLUMES I AND Il

Purpose

This combined volume is intended for use in college-level courses in which
both Assembly language programming and 80x86 PC interfacing are discussed. It
not only builds the foundation of Assembly language programming, but also
provides a comprehensive treatment of 80x86 PC design and interfacing for students
in engineering and computer science disciplines. This volume is intended for those
who wish to gain an in-depth understanding of the intemal working of the IBM PC,
PS, and 80x86 compatible computers. It builds a foundation for the design and
interfacing of microprocessor-based systems using the real-world example of the
80x86 IBM PC. In addition, it can also be used by practicing technicians, hardware
engineers, computer scientists, and hobbyists who want to do PC interfacing and
data acquisition.

Prerequisites

Readers should have a minimal familiarity with the IBM PC and the DOS
operating system in addition to having had an introductory digital course. Knowl-
edge of other programming languages would be helpful, but is not necessary.

Although a vast majority of current PCs use 386, 486, or Pentium micro-
processors, their design is based on the IBM PC/AT, an 80286 microprocessor
system introduced in 1984. A good portion of PC/AT features, hence its limitations,
are based on the original IBM PC, an 8088 microprocessor system, introduced in
1981. In other words, one cannot expect to understand fully the architectural
philosophy of the 80x86 PC and its expansion slot signals unless the 80286 PC/AT
and its subset, the IBM PC/XT, are first understood. For this reason, we describe the
8088 and 80286 microprocessors in Chapters 9 and 10. In doing so, we describe the
purpose and use of the supporting chips of the 8088, 80286 microprocessor such as
the 8288, 8284, 82288, and 82284. Although these supporting chips provide the
necessary timing for the 8088/86/286 processors, they are no longer used in later
generation 386/486/Pentium microprocessors, since their functions are incorporated
into the CPU.

Contents of Volume |

A systematic, step-by-step approach has been used in covering various
aspects of Assembly language programming. Many examples and sample programs
are given to clarify concepts and provide students an opportunity to learn by doing.
Review questions are provided at the end of each section to reinforce the main points
of the section. We feel that one of the functions of a textbook is to familiarize the
student with terminology used in technical literature and in industry, so we have
followed that guideline in this text.

Chapter 0 covers concepts in number systems (binary, decimal, and hex)
and computer architecture. Most students will have leamed these concepts in
previous courses, but Chapter 0 provides a quick overview for those students who
have not learmed these concepts, or who may need to refresh their memory.

Chapter 1 provides a brief history of the evolution of 80x86 microprocessors
and an overview of the internal workings of the 8086 as a basis of all 80x86
processors. Chapter 1 should be used in conjunction with Appendix A (a tutorial
introduction to DEBUG) so that the student can experiment with concepts being
leamed on the PC. The order of topics in Appendix A.has been designed to
correspond to the order of topics presented in Chapter 1. This allows the student to
begin programming with DEBUG without having to learn how to use an assembler.

xxxii



Chapter 2 explains the use of asscmblers to create programs. Although the
programs in the book can be used with Microsoft’s MASM assembler, any Intel-
compatible assembler such as Borland’s TASM will also do.

Chapter 3 introduces the bulk of the logic and arithmetic instructions for
unsigned numbers, plus bitwise operations and bit manipulation in C.

Chapter 4 introduces DOS and BIOS interrupts. Programs in Assembly and
C allow the student to get input from the keyboard and send output to the monitor.
In addition, interrupt programming in C is described, as well as how to put Assembly
language code in C programs.

Chapter 5 describes how to use macros to develop Assembly language
programs in a more time-efficient and structured manner. We also cover INT 33H
mouse function calls and mouse programming.

Chapter 6 covers arithmetic and logic instructions for signed numbers as
well as string processing instructions.

Chapter 7 discusses modular programming and how to develop larger
Assembly language programs by breaking them into smaller modules to be coded
and tested separately. In addition, linking Assembly language modules with C
programs is thoroughly explained.

Chapter 8 introduces some 32-bit concepts of 80386 and 80486 program-
ming. Although this book emphasizes 16-bit programming, the 386/486 is intro-
duced to help the student appreciate the power of 32-bit CPUs. Several programs
are run across the 80x86 family to show the dramatic improvement in clock cycles
with the newer CPUs.

Contents of Volume 1l

Chapter 9 describes the 8088/86 microprocessor and supporting chips in
detail and shows how they are used in the orginal IBM PC/XT. In addition, the
origin and function of the address, data, and control signals of the PC/XT expansion
slot are described.

In Chapter 10, the 80286 microprocessor and its supporting chips are
examined in detail. In addition, we examine the origin of the signals of the PC/AT
expansion slot, commonly known as the ISA bus.

Chapter 11 provides an introduction to various types of RAM and ROM
memories, their interfacing to the microprocessor, the memory map of the 80x86
PC, the timing issue in interfacing memory to the CPU, and the checksum byte and
parity bit techniques of ensuring data integrity in RAM and ROM.

Chapter 12 is dedicated to the interfacing of I/O ports, the use of IN and
OUT instructions in the 80x86, and interfacing and programming of the 8255
programmable peripheral chip. We also cover the PC Interface Trainer and Bus
Extender, which are used to interface PCs to devices for data acquisition such as
LCDs, stepper motors, ADC, DAC, and sensors. In addition, programming I/O with
C language is covered.

Chapter 13 discusses the use of the 8253/54 timer chip in the 80x86 PC, as
well as how to generate music and time delays.

Chapter 14 is dedicated to the explanation of hardware and software
interrupts, the use of the 8259 interrupt controller, the origin and assignment of IRQ
signals on the expansion slots of the ISA bus, and exception interrupts in 80x86
MiCroprocessors.

Chapter 15 is dedicated to direct memory access (DMA) concepts, the use
of the 8237 DMA chip in the 80x86 PC, and DMA channels and associated signals
on the ISA bus.

Chapter 16 covers the basics of video monitors and various video modes
and adapters of the PC, in addition to the memory requirements of various video
boards in graphics mode.

Chapter 17 discusses serial communication principles, the interfacing and
programming of National Semiconductor’s 8250/16450/16550 UART chip, Intel’s
8251 USART chip, and verifying data integrity using the CRC method.
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Chapter 18 covers the interfacing and programming of the keyboard in the
80x86 PC, in addition to printer port interfacing and programming. In addition, a
discussion of various types of parallel ports such as EPP and ECP is included.

Chapter 19 discusses both floppy and hard disk storage organization and
terminology. We also show how to write Assembly language programs to access
files using INT 21H DOS function calls.

Chapter 20 examines the 80x87 math coprocessor, its programming and
interfacing, and IEEE single and double precision floating point data types.

Chapter 21 explores the programming and hardware of the 386 microproc-
essor, contrasts and explains real and protected modes, and discusses the implemen-
tation of virtual memory.

Chapter 22 is dedicated to the interfacing of high-speed memories and
describes various types of DRAM, including EDO, SDRAM, and Rambus, and
examines cache memory and various cache organizations and terminology in detail.

In Chapter 23 we describe the main features of the 486, Pentium, and
Pentium Pro and compare these microprocessors with the RISC processors. Chapter
23 also provides a discussion of MMX technology and how to write programs to
detect which CPU a PC has.

Chapter 24 describes the MS DOS structure and the role of CONFIG.SYS
and batch files in the 80x86 PC, the writing of TSR (terminate and stay resident)
programs, and device drivers.

Chapter 25 explains 80x86 PC memory terminology, such as conventional
memory, expanded memory, upper memory block, and high memory area, as well
as MS DOS memory management.

Chapter 26 provides an overview of IC technology including the recent
advances in IC fabrication, describes IC interfacing and system design issues, and
covers error detection and correction.

Chapter 27 is dedicated to the discussion of the various types of PC buses,
suchas ISA, EISA, USB, their performance comparisons, the local bus, and features
of the PCI local bus.

In Chapter 28 we show how to use C language to access DOS function calls,
BIOS interrupts, memory, input/output ports, and CMOS RAM of the 80x86.

Appendices

The appendices have been designed to provide all reference material
required for the topics covered in this combined volume so that no additional
references should be necessary.

Appendix A provides a tutorial introduction to DEBUG.

Appendix B provides a listing of Intel’s 8086 instruction set along
with clock cycles for 80x86 microprocessors.

Appendix C describes assembler directives with examples of their use.
Appendix D lists some commonly used DOS 21H function calls and
INT 33H mouse functions.

Appendix E lists the function calls for various BIOS interrupts.
Appendix F provides a table of ASCII codes.

Appendix G lists the I/O map of 80x86-based ISA computers.
Appendix H provides a description of the BIOS data area.

Appendix I contains data sheets for various IC chips.

Diskette

There is a diskette attached to this combined volume (Volumes I and II) that
provides the source code for programs and examples in the textbook. The files on
the diskette are in ASCII format.




Lab Manual

There i1s a lab manual for this combined volume (Volumes I and II). The
section for Volume I covers Assembly language programming using DEBUG and
assemblers such as Microsoft’'s MASM and Borland’s TASM. It includes 24 labs
covering data types, anthmetic operations, string handling, graphics programming,
32-bit programming, and macros. In addition, there are 10 advanced labs involving
more complex programming techniques such as sorting, advanced calculations, data
structures and manipulation. The section for Volume II begins by exploring system
programming using DEBUG, assemblers, and 32-bit programming features avail-
able in MicroSoft’s CodeView and Borland’s Turbo Debugger. Then it describes
how to wire-wrap a PC bus extender in order to access signals on the expansion slot.
This bus extender is used to interface devices to the PC such as LCDs and LEDs,
ADC and DAC converters, sensors, printers, and more.
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