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PREFACE

Recognizing the growing awareness of common problems and answers in the nonlinear
sciences, the Los Alamos Center for Nonlinear Studies (CNLS) was established by
the Laboratory Director in October 1980, to coordinate interdisciplinary studies,
to strengthen ties among Laboratory researchers and with the academic community,
and to interface between basic and applied areas. The breadth of research prob-
lems at Los Alamos and the variety of technical expertise reflected in its staff
offers a fertile environment for the CNLS. But from its inception, the Center was
intended not for Los Alamos alone, but also as an international resource for the
entjre nonlinear community. .

To realize this intentioﬁ?&the CNLS, through its Chairman, Alwyn C. Scott,
has developed several continuing modes of operation:

identifying broad themes for intensive interdisciplinary
research (currently, these themes are nonlinear phenomena in
reactive flows and chaos and coherence in physical systems);

coordinating an active visitor program, including both guest
lecture series and longterm collaborative visits; "

. sponsoring technical workshops aimed at bringing experts
together to expound recent results and delineate future di-
rections in specific nonlinear problems (recent workshops
have included "Adaptive Grid Methods," "Coupled Nonlinear
Oscillators," and "Solitons and the Bethe Ansatz"); and

hosting an annual international conference on some topical
area of nonlinear science.

In the last category, the major event for the CNLS in its first year was an
international conference on ‘Nonlinear Problems: Present and Future' held at the
Los Alamos National Security and Resources Study Center, Los Alamos, March 226,
1981, chaired by Mark Kac and Stanislav Ulam. This volume contains the edited
proceedings of that conference. We are honored to dedicate the proceedings to
Fermi, Pasta, and Ulam, distinguished Los Alamos alumni who have set a tradition
of excellence to which the CNLS must aspire. [We have all been saddened by the
death of John Pasta since the Conference took place and hope that this volume will
be accepted as our small tribute to his imaginative career.]

As befits an inaugral conference, a very wide spectrum of topics were rep-
resented ranging from pure mathematics, through numerical methods, to sophis-
ticated experiments on fluids and solids. More specialized meetings are antic-
ipated in future years including some of the many topics that it was impossible
to cover in 1981. However, the deliberately interdisciplinary atmosphere of the
inaugral meeting truly reflected an exciting stage of development of nonlinear
science as a unified subject. The provocative title attracted well over two
hundred participants and a distinguished list of speakers, many of whom succeeded
admirably in overcoming scientific language barriers and generating a broad inter-
est in their fundamental problems. Four major topics were reperesented through
survey lectures and workshop activities: turbulence in plasmas and fluids (both
the onset and fully-developed turbulence); nonlinearity in field theory and in
Tow-dimensional solids; reaction- diffusion processes; and new methods in non-
linear mathematics. As described in detail in the Contents, we have preserved
these divisions in the Proceedings, supplementing invited papers with a-small
number of relevant contributed ones. It is our firm impression that these ar-
ticles, through survey and original work, represent the cutting edges of several
important areas of nonlinearity. We hope they will be valuable reading for nov-
ices and experts alike.



PREFACE

We think that all those who attended the Conference will remember it for its
stimulation and unobtrusive organization. This crucial combination could not have
beer achieved without the advice and support of our colleagues in the CNLS. The
Director and his efficient staff provided every conceivable help in coordinating
the splendid Laboratory facilities. Mark Kac and Stanislav Ulam were supportive
conference chairman and Stanislav Ulam graciously agreed to give a nostalgic
after-dinner speech on the FPU problem which was admired by all. No conference is
better than its secretary. In Janet Gerwin we had a secretary whose competence
was apparent at every stage before, during, and after the conference. A1l three
organizers are immeasurably indebted to her for her skill in the face of the
continual crises! We are also happy to thank Janet, Chris Davis, Frankie Gomez,
Mary Plehn, apd Kate Procknow for their skillful assistance in preparing these
proceedings. Last but not least we must thank our publishers for their excellent
cooperation and every conference attendee for joining us in this celebration of
nonlinear physics. ;

Los Alamos A. R. Bishop
D. K. Campbell
B. Nico]aenko



DEDICATION

It started with an experiment--the new kind in which the same
instrument, the new computer, both creates and pyobes an idealiz-
ation of the real world. ’

The purpose, quite modest, was to test what seemed beyond
doubt, namely, that in a nonlinear discretized string the energy
initially concentrated in one vibrational mode ultimately distrib-
utes itself among all modes. The result, first announced in a Los
Alamos report, was however, startlingly different: after an ini-
tial tendency toward equipartition, the energy flowed back to the
initial mode.

Thus a new chapter of nonlinear science began and much of its
spectacular growth in the past quarter of a century is directly or
indirectly traceable to the pioneering experiment with the non-
linear string.

It 1is therefore fitting that this Conference marking the
creation of the Los Alamos Center for Nonlinear Studies be dedi-
cated to the authors of that historic 1955 report: Fermi, Pasta,
and Ulam.

Los Alamos M. Kac
N. Metropolis
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OPTIMAL CONTROL OF NON WELL POSED DISTRIBUTED SYSTEMS
AND RELATED NON LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Jacques-Louis LIONS
Collége de France and INRIA

Various practical problems lead to the question of optimal con-
trol of non well posed systems - such as non linear unstable
systems. We begin with simple linear - quadratic exemples of
non.well posed evolution systems ; the optimality system leads
to new non linear Partial Differential Equations of Ricatti's
type. We study then non linear parabolic unstable systems,

with a distributed or a boundary control, with or without cons-
traints. The optimality system is given.

INTRODUCTION

1. Let 7 be a partial differential operator, linear or not, of evolution or of
stationary type. In the usual theory of optimal control of distributed systems,
the state equation is given, in a formal manner, by

ay =B8v (1)
where v denotes the control variable (ér'funttion) and #1is an operator which can

be thought of as giving boundary conditions ; in (1) one has to add initial condi-
tions if 7 is of evolution type.

In the usual theory one assumes that, given v in a suitable Banach space U ,
equation (1) subject to appropriate boundary and initial conditions, admits a uni-
que solution denoted by y(v) ; y(v) is the state of the system ; y(v) belongs to

a space Y when v spans U.

Then the cost function is given by

I(v) = o(y(v)) + w(llivily) (2)
where ¢ is a continuous functional from Y -+ R, where ||vHU denotes the norm of
v in U and where X = y(X) is continuous for Xz 0, ¥(0) = Y(A) * 4o as A > +,

If Uad denotes a (suitable) subset of U, then the problem is to find
inf J(v), ve U g X (3)

If (3) admits a solution u, one of the main questions is then to find a set of
necessary (or necessary and sufficient) conditions for characterizing u, i.e.

find the optimality system. For these questions we refer to J.L. LIONS [1][2][3]
and gnrthe Bibliography therein.

2. A slightly different situation can occur if the functional ¢ in (2) is not de-
fined on the whole space Y. Then one has to introduce new functional spaces.
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2t us give an example. Let & be a bounded open set of R3 with-boundary T' ; we
nsider the state equation

3Y - By = v(t)6(x-b) in Q = x10,TC

y=0onZ =Tx]0,T[, (4)
y(x,0) = 0

ere §(x-b) denotes the Dirac measure at point be(.

ven ve LZ(O,T), problem (4) admits a unique weak solution (cf. J.L. LIONS and
MAGENES [11) y(v) € L2(Q).

>t us consider now the cost function

Iv) = | Cy(x,Tsv)-zg% dx + NJ Ve dt, (5)
Q o

lere z4 is given in LZ(Q) and N> 0. In general, for ve LZ(O,T), y(*,Tsv) is defi-

:d but as an element of H-1(2) (Sobolev space of order -1) and not an element of

(@). Therefore (5) does not make sense for ve LZ2(0,T). One has then to restrict

to those v's such that

vel2(0,T) and y(,T;v) « L2(). (6)
’ T
1is defines a Hilbert space (when provided with the norm (J vzdt +J y(x,T;v)del/z
wy U, and if 0 Q
Upg<V s (7)

: consider again problem (3). In order to proceed it is necessary to study U, not
1ly to make things more precise but also because the dual U' of U is needed for
*iting the optimality system. One verifies that U coincides with the set of those
s in L2(0,T) such that

TT -3/2
JJ (2T-(t+s)) v(t)v(x)dt ds < . (8)
0
r questions of this type we refer to J.L. LIONS [43C51, J. SIMON [11].

A third situation can occur when (1) is not a well posed problem. Equations (1)
which have a physical interest and which Tead to non well set problems arise
) unstable phenomena, in situations where we have bifurcations - cf. J.P. KERNEVEZ
L. LIONS and D. THOMAS [1]. One has then to change significantly the point of
ew . One considers the set of v and z such that

vel, zeY . (9)
7z =Bv . ‘ (10)
ien one considens the cost function

I(vaz) = o(z) +w(llvlly) (11)
id one looks for

inf J(v,z), v,z subject to (9) (10) (12)

ith the pussible added constraint



OPTIMAL CONTROL OF NON-WELL-POSED DISTRIBUTED SYSTEMS 5

vel,y. » (13)
As an example (without physical interest) we consider

+ Az =vinQ
W (14)
v,ze L7(Q)
with the conditions
z(x,0) =0 ,z=00nZ (15)

(one can prove that conditions (15) do make sense ; cf. Section 1 below). Let:the
cost function be given by

Insz) = Nz-zgl,  + NIl (16)
' 4" 2(q) L2(Q)

and let U 4 bea closed convex subset of L2(Q) such that the set of those v,z's
such that™ veU,q and (14) (15) hold true is not empty. Then

inf J(v,z) , ve Uyg » Vo2 satisfy (14) (15) (17)

admits a unique solution {u,y}. ®

Returning to the general case, we want to find an optimality system. for these pro-
blems of optimal control.

4. We consider in this paper three (of the many) situations of such problems.
In Section 1 we consider a system of type (14) but which is alse non well posed
for t<T, namely

%% +m(t) Az = v, (18)

with m>0 (resp. <0) near O (resp. near T).

Decoupling the optimality system leads to apparently new nonlinear Partial Diffe-
rential equations.

In Section 2 we consider unstable systems governed by

9
5% -hz -0 =y (19)

(or with boundary control).

Other situations are indicated in J.L. LIONS [5], such as the case of elliptic
systems which can be controlled by Cauchy data on part of the boundary.

Problems of optimum design where again the state equation is not well set will be
studied elsewhere. R %

5. Existence problems for not necessarily well set problems (such as Navier-Stokes
equations in space dimension equal 3) have been studied by A.V. FOURSIKOV (1] ;
this author does not consider the optimality system.

The optimality system for problem (17) involves new functional spaces (of distri-
butions of infinite order) ; we refer to P. RIVERA [1].
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1. New non linear Partial Differential equation of Riccati's type.

1.1. Setting of the problem.

We consider couples {v,z} such that

vize L2(Q) xL2(Q) . Q = 2x10,TI, (1.1)
and

Zymt)z=vinQ, (1.2)

z(x,0) = 0 in @, ' (1.3)

z=0onzx =rx]0,TL. (1.4)

In (1.2) m denotes a continuous fonction with
a graph as represented on Fig. 1. m

Conditions (1.3) (1.4) make sense.
Let us check it for (1.3) ; it follows from
(1.1) (1.2) that

2 12(0,15.%(0)),

(1.5) O
2 12(0,1307% ()

(where H2(2) = dual of Hﬁ(n), K@) = (oo,

= 2

99 % - 2 _ 9 _ 5
5;; s axiaxj e L°(Q),¢=0, axi =0onT}.) ;
it follows from (1.5) and from standard results
that z is continuous form [0,T] » H™*(Q) so Fig. 1
that (1.3) makes sense. One checks by similar
techniques that (1.4) makes sense.

0f course (1.2) (1.3) (1.4) is a non well posed problem. Moreover the system is
also non well posed in the backward time direction ; if we replace (1.3) by z(x,T)
=0 in ©, the corresponding problem is also non well posed.

The cost function that we consider is given by

Iv.z) = llzzgll%, + NG, 1.6
d Lz(Q) (1.6)

L2(q)
z4 given in LZ(Q), N>0,

We consider the "no-constraints" problem, namely

inf J(v,z) , v,z subject to (1.1)...(1.4). (1.7)

1.2. Optimality system.

It is a simple matter to check that problem (1.7) admits a unique solution u,y.
We want to characterize u,y ; this characterization is given by the following
result : there exists a unique set {u,y,p} of functions such that
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2L+ m(t)by = u, - 22+ m(t)p = y-zy (1.8)
y=p=0on%Z, (1.9)
y(x,0) = 0, p(x,T) =0 (1.10)
y,peinO). (1.11)
p+hu = 0 (1.12)

One can of course eliminate u by (1.8) (1.12). The system in u,y,p is called the
optimality system ; p is a Lagrange multiplier.

The proof of this result can be obtained as follows ; one considers the penalized
problem

3 (vs2) =llz-zgll?, + N]ivlI L
e(vs2) d' 20q, 2

92 | m(t)az-v||? (1.13)
@ ©£°F 12(0)

where veL2(0), 22 L2(q), 32 + m(t)az« 12(Q) and z(x,0) = 0 ; z = 0 in £, and
where € >0 is "small".

Then
inf Je(v,z) = Je(ue,ye). (1.14)
One defines pe by
1 aya
Pe = - L (et My, - u). (1.15)
One verifies that

P,
- 5?‘ + m(t)Ap€ = ¥.m2q in Q,

(1.16)

P(x,T) =0 ,p_ =00nZL
and that

Pe + NuC =0 in Q. (1.17)
It follows from (1.13) and (1.17) that

Uc Y, sP. remain , as €+0, in a bounded set of (LZ(Q))3, (1.18)
and that

aye

Fp t )by, - ug = vE g e, || 2 <C (1.19)

(@)

Eerefor one can pass to the limit in € - 0. One verifies that u ea¥e T ULy in
L4(Q) XL (Q) and that u,y,p satisfy the optimality system.

One can write a variational formulation for the problem, as follows : p is the so-
lution of

(- %% + m(t)ap, - Qﬂ.+ m(t)aq) + % (p,q) = _(Zd’ - Eﬂ + mAq) vq (1.20)
(where (p,q) = JQ p q dx dt) where qe¢ L Q) - sﬂ+ m(t)Aq ¢ L (Q), q(x,T) = 0,
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q=0onzZ. =.

1.3. We are now going to show how to "uncouple" the optimality system.

The technique is similar to the one in J.L. LIONS [ 11 but one deals now with weak
solutions, due to the fact that the "state equation" is not well posed.

One considers a problem analogous to (1.8)...(1.12) but in the interval 1s,TC ,
0<s<T:

%%+m¢ *Fli'w =0, '?EJ' mAyY =¢'Zd , in @x1s,TL ,
¢(x,s) = h(x) in @, ¥(x,T) = 0 in Q, (1.21)

¢ =¢ =0onTx]1s,TL.

In (1.21) h is given in, say, the space of ¢ smooth functions with compact support.
Problem (1.21) is the optimality system for a problem entirely analogous to (1.6)
(1.7) but with @xJ0,T[ replaced by @x1s,T[ and with z(x,0) = 0 replaced by ¢(x,s)=
h(x). Therefore (1.21) admits a unique solution and

Y(x,s) is uniquely defined. (1.22)
The space where y(+,s) belongs depends whether s<t, or s> ty. If s<ty, one deals

with a well set system, ?nd B(+,s) e HE(Q) 5 if s<ty, one has to work with weak
solutions and ¥(*,s) e H™1(Q).

We have :

Y(*,s) = P(s)h + r(s) (1.23)

where P(s) is a linear operator ; one has
P(s)e(H1() 5 H'l(@)) if s=t, ,

4 3 (1.28)

P(s) e£(H “(R) s Hy(Q)) if s>t .

If we take in (1.21) h = y(°,s) = y(s) then ¢,4 = restriction of y,p to x1Is,TL,
so that (1.23) becomes (changing s into t) :

p(t) = P(t)y(t) + r(t). (1.25)

Using the L. Schwartz kernel theorem [ 1], one sees that
P(t)h = | Px,g.t) ne) d (1.26)
where the kes:nel P(x,E,t) is a distribution on @ xQf.
Using (1.25) into (1.8)...(1.12) one obtains fin§11y that P(x,E,t) satisfies
- 2 4 m(t) (AP + JQP(x,c.t)P(C,E.t)dC = 8(x -£), (1.27)
P(x,E,T) =0 (1.28)
and
P(x:E,t) = P(E,x,t) ¥x,Ee@xQ . ' (1.29)

The Boundary conditions are of Dirichlet type, in the usual sense for ty<t<T



