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Introduction

From the astrophysical scale of a swirling spiral galaxy, through the geophysical
scale of a hurricane, down to the subatomic scale of elementary particles, vortical
motion and vortex dynamics have played a profound role in our understanding
of the physical world. Kuchemann referred to vortex dynamics as ‘‘the sinews
and muscles of fluid motion.”” In order to update our understanding of vortex
dominated flows, NASA Langley Research Center and the Institute for Computer
Applications in Science and Engineering (ICASE) conducted a workshop during
July 9—-11, 1985. The subject was broadly divided into five overlapping topics—
vortex dynamics, vortex breakdown, massive separation, vortex shedding from
sharp leading edges and conically separated flows. Some of the experts in each
of these areas were invited to provide an overview of the subject. This volume
is the proceedings of the workshop and contains the latest, theoretical, numerical,
and experimental work in the above-mentioned areas.

Leibovich, Widnall, Moore and Sirovich discussed topics on the fundamentals
of vortex dynamics, while Keller and Hafez treated the problem of vortex break-
down phenomena; the contributions of Smith, Davis and LeBalleur were in the
area of massive separation and inviscid-viscous interactions, while those of Cheng,
Hoeijmakers and Murman dealt with sharp-leading-edge vortex flows; and Fiddes
and Marconi represented the category of conical separated flows.

The opening article of this volume by Leibovich deals with the principal features
of weakly nonlinear bending waves (in the form of solitons) on infinitely long,
initially straight vortex filaments. Such studies, while of interest in their own
right, also provide possible insight into the highly nonlinear vortex breakdown
phenomena. In this article, in outline form, Leibovich treats the global bifurcation
of axially symmetric, steady, inviscid vortex flows, and suggests the connection
with Benjamin’s vortex breakdown theory.

Widnall gives a brief review of the linear stability theory for concentrated
vortex structures. She distinguishes between three types of instability—two-di-
mensional, three-dimensional long-wave and three-dimensional short-wave in-
stability. Then she analyzes the three-dimensional instability of a single simple
vortex shedding from a cylinder and the Foppl vortices modelling the flow behind
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the cylinder. Such instability mechanisms are proposed as sources of three-di-
mensionality in separated and turbulent flows.

Sirovich and Lim provide a historical background for Karman vortex street,
and they interpret it afresh in the light of a recent experiment on the flow behind
a circular cylinder. This experiment relates the flow structure to that of a low
order nonlincar dynamical system. They give a fairly complete treatment to the
initial value problem for the linear evolution of an initial perturbation to the
Karman vortex trail. They find “‘encouraging’” similarities between their theo-
retical results and some experiments for the rotation number (the ratio of the
second frequency to the shedding frequency) behavior with Reynolds number.
Such a similarity is also found for the phenomenon of wave propagation along
the trail.

The relevance of vortex sheets to separated flows and the origin of turbulent
shear flows is very well established. In their article, de Bernardinis and Moore
discuss the ring-vortex representation of an axi-symmetric vortex sheet for prac-
tical purposes. This is an extension of Van der Vooren’s procedure for two-
dimensional vortex sheets. This representation loses accuracy if the vortex sheet
intersects the axis of symmetry. This loss of accuracy is discussed in the case
of an instantaneously spherical vortex sheet.

The work of Keller et al. extends Benjamin’s variational principle for axi-
symmetric flows to include free-surface flows. They apply it to a Rankine vortex,
and show a loss-free transition between two vortex states, and discuss its relevance
to a certain type of vortex breakdown.

Hafez and Salas present results (based on two cntirely different numerical
methods) which show that the pertinent equations governing a steady axi-sym-
metric inviscid flow with swirl yield solutions with closed streamlines. They
also present solutions to the steady axi-symmetric Navier—Stokes equations, but
the Reynolds numbers calculated are too low to allow any conclusions on whether
the inviscid solutions obtained are limiting solutions of the viscous problem.

The high-Reynolds-number, large-scale separated flows have been one of the
central problems of fluid dynamics. The theory is far from complete, and the
full-scale computations are not absolutely convincing. Smith presents a succinct
review of the available theory for two-dimensional incompressible flows with
massive separation and discusses their properties and numerical solutions. He
adopts the view that since small-scale separated flows can be described completely
within the framework of triple deck theory, they can be used to get an insight
into the physical mechanisms involved in massive separations. The work of
Rothmayer is such an attempt. The paper of LeBalleur is a fairly comprehensive
review of the status of inviscid-viscous interaction procedures for the computation
of massively separated flows.

Hoeijmakers reviewed the prevalent computational methods for the simulation
of aerodynamic flow configurations involving a leading-edge vortex. These
methods are categorized into rigid-vortex methods, fitted-vortex methods and
captured-vortex methods. The rigid-vortex methods consist of classical potential
flow techniques (such as vortex-lattice methods) which incorporate empirical
concepts to account for vortical interactions without resolving the vortical flow
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details. Fitted-vortex methods fix vortex sheets in potential flow models to allow
for vortical interactions and include discrete vortex methods and nonlinear vortex
lattice methods. Captured-vortex methods are based on Euler equations or Navier—
Stokes equations. A very useful comparative study of these methods is given.
Cheng et al. employ two types of fitted-vortex methods to simulate the vortex
dynamics of a leading edge flap, while Murman and Powell study the leading
cdge vortex shed from a delta wing. The latter solve the Euler equations by
Jameson’s finite-volume technique on a rather fine grid. They obtain good agree-
ment with the measured pitot pressures.

Fiddes and Marconi both consider separated flows about cones at incidence.
Fiddes focuses on modelling the vortical flow by line vortex models and vortex
sheet models. A major interest of this work is in understanding the development
of asymmetry in the flow field. Marconi solves the Euler equations by Moretti's
lambda-scheme. and fits both the bow shock and the cross-flow shock. This
work is one of the most systematic studies of the conically separated flows on
record.

MYH. MDS
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Waves and Bifurcations in Vortex Filaments

SIDNEY LEIBOVICH

ABSTRACT

Weakly nonlinear bending waves on vortex filaments are briefly described.
These take the form of solitons governed by the cubically nonlinear Schrodinger
equation. In addition, conditions leading to the global bifurcation of inviscid,

axially-symmetric vortices are outlined.

1w Introduction

Concentrated vortices, such as those commonly found in flows of aerodynamical
interest, allow waves to propagate along their cores much like water waves on a
running stream. In addition, vortices often are generated which, due to
instabilities, cannot persist without change of form. In this paper, we consider
inviscid phenomena that may happen in infinitely long, initially straight vortex
filaments having vortex cores with prescribed structures. These idealized vortices
are assumed to exist in an unbounded incompressible fluid.

This work is motivated in part by the phenomenon of vortex breakdown (see
Leibovich (1984)). These coherent, highly nonlinear, disruptions of nearly
columnnar vortex flows (that is, flows with cylindrical streamsurfaces) do not yet
have a satisfactory theoretical description. At their best, existing theories for
waves on vortices provide a description of weakly nonlinear motions, and therefore
cannot be expected to amount to a fully acceptable theory for vortex breakdown.
Despite this, it has been argued (Faler and Leibovich, 1977; Leibovich, 1983, 1984;
Maxworthy et al., 1983; Escudier et al., 1982) that wave theories have provided
useful insights concerning vortex breakdown events. Those wave theories which have
been heretofore invoked in relation to this phenomenon admit only axially symmetric
disturbances, even though it is known that vortex breakdown does not have this
symmetry. In particular, "bending waves", those which cause the vortex centerline
to move radially, are known to exist in all forms of vortex breakdown (Leibovich,
1984). The first part of this paper concerns weakly nonlinear bending waves:
these, of course, are of interest beyond their possible connections to vortex
breakdown, as the recent work of Hopfinger et al. (1984) and Maxworthy et al. (1985)
attest.



A second topic addressed here concerns the bifurcation of a class of fully
nonlinear vortex flows. We ask when multiple solutions can occur for steady,
axially symmetric vortex flows with specified boundary data. The method used is
global in the sense that the existence of multiple solutions, and the location of
the bifurcation criterion are established without use of local expansions.

The treatment of both topics of this paper will be in outline form only; more

detailed presentations of the subject matter will be given elsewhere.

2 Bending waves and spiral solitons

We deal with the Euler equations and use cylindrical (r,0,z) coordinates. Any

columnar flow with velocity vector

Ulr) = (0,V(r),W(r)) (1

as a possible inviscid motion. Perturbations to this flow are considered with

velocity vectors

n

v

U(r) + eu(r,8,z,t;e);

2
u = (u,v,w) = uylr,8,2,t,1,2) + eu, + eu, + *or (2)
where € is a small amplitude parameter and dots stand for higher order terms which
will not be considered. The arguments 1 and Z are slow time and space variables to
be specified; they are included in anticipation of the need for a multiple scaling

analysis in the accounting for nonlinearities.

2.1 Linear analysis

The assumed expansion is substituted into the Euler equations and terms higher
order than those linear in e are neglected, leaving a problem to be solved for uo.
A1l disturbance quantities are assumed to be in normal mode form:

u, = go(r) exp i(kz + m6 - wt) . (3)

and we let the radial component of U be f. The modal amplitude f(r) satisfies a

second order differential equation first given by Howard and Gupta (1962). This
equation may be compactly written as follows

D(SD,e) - (1 + 2+ 2yp -0 %)
Y 2
Y
where

Y =keU-w; k=mr e, +ke; S=1/]k|%;
w e ~Z P



2 - 2 =]
a = rov-[r ke /[k]2]; b = - 2ke®) (ker)/[k|%; @ - e,Vr
Here g and e, are unit vectors and g is the unperturbed vorticity vector.
The function f(r) must vanish as r tends to infinity, and, for |m| =1,

single-valuedness requires Df = 0 at r = 0. We consider here only the bending modes
|m| = 1.

The parameter k is regarded as given, so that the problem for f is an
eigenvalue problem with the frequency w as eigenvalue. For general velocity fields
U and arbitrary k, the eigenvalue problem must be solved numerically. For long
;aves (k € 1) numerical computation reveals at least two branches of the dispersion
relation, w = w(k). Both have zero frequency at k = 0; one has zero frequency and
phase speed at k = 0, and we call this the "slow branch". The other(s) (generally
more than one) branch(es) of the dispersion relation has nonzero frequency and
infinite phase speed at k = 0; such a branch we call a "fast branch".

Long waves are of considerable interest, since many phenomena arising in vortex
filaments occur on length scales large compared to the radius of the vortex core.

It is therefore significant that the eigenfunction and dispersion relation on the
slow branch in the 1limit k » 0 can be found by a singular perturbation analysis of
the Howard-Gupta equation for arbitrary vortex core structure. The analysis will be
described elsewhere; here we cite only the final results. The composite expansion

2
of the eigenfunction valid to O(k") is

£(r) = a(r) + mlk|w(r)

r X
= k2{9r2/2 + f [x392(x)] 1dx / [y392(y) + ZyZWW'(y)]dy}
0 0
r T
0 0, 2 1
= mw - —5 + - kK [en(|k|r/2) + T, + Z
2mr
T
0
- ki3 &K (k| (5)

where Kq is the modified Bessel function of the second kind, and the dispersion

relation to this order is

> To
w =~ m" 3= (8 + an(2/]k])) (6)
where 1.2 F2 F2 2
B =S L; . sl U, o B /] r w2 dr - Y_ . (7)
o re’ 1 e T r2 o e
0 0 0

Here Yo is Euler's constant, and

Ty = 27 lim rv(r) (8)

ro>o

which is assumed nonzero.



This agrees with the long wave dispersion relation developed by Moore and Saffman
(1972), although their derivation of it is ad hoc. They consider only the rigid
rotational motion of an ideal helical vortex filament, using the Biot-Savart formula
with a cutoff established by comparison with a steady calculation of Widnall et al.
(1971). The connection between such a problem and the desired dispersion relation
is obscure.

Numerical computations of the primary fast mode were given by Leibovich and Ma

(1983) for the particular vortex

W(r) =0, V(r) = [1 - exp(—r‘z)]/r‘ . (9)

There are many fast branches of the dispersion relation for this example, all of
which merge as k tends to zero, and all have zero group velocity there. Fast
branches, such as these, also turn out to be amenable to analysis for general
velocity fields in the limit of vanishing wavenumber. The details have been worked
out by S. N. Brown, and we will report the details in a joint paper. It is,
however, the slow branch which is of immediate interest, since Maxworthy et al.
(1984) report the discovery of slow branch solitons in experiments on vortex
filaments. We note that their attempts to compare with the soliton results of
Leibovich and Ma (1983) were not generally successful. This presumably is so
because the Leibovich and Ma soliton is on the (primary) fast branch.

We turn briefly now to consider solitons centered on the slow branch.

2.2 Solitons

To extend the analysis to higher order, modulation of the wave over long
spatial and temporal scales must be allowed. This may be done by permitting the
amplitude A in equation (1) to depend on a slow space variable X and a slow time

variable 1 where, to balance the nonlinearities, we take
X = efz -~ cgt), =€ Lt 4

and Cg is the group velocity,
c = dw/dk
g
Thus the "carrier wave" of frequency w and wavenumber k is modulated by the

wave envelope A(X,1), and the motion of the wave packet is determined by the

evolution of A, which is controlled by the nonlinear Schrodinger equation

138/07 + udA/ax> + \)A]A]2 =0 (10)
where

u o= dzm/dk2 i

and the constant v is found from an orthogonality condition. Soliton solutions to



