Many-Body Methods in
Chemistry and Physics

MBPT and Coupled-Cluster Theory
Isaiah Shavitt and Rodney ). Bartlett

| ST SR
*‘ *{‘h Lo |

A g L e




MANY-BODY METHODS
IN CHEMISTRY
AND PHYSICS

MBPT and Coupled-Cluster Theory

ISATAH SHAVITT

Professor Emeritus
The Ohio State University
and
Adjunct Professor of Chemistry
University of Illinois at Urbana-Champaign

and

RODNEY J. BARTLETT

Graduate Research Professor of Chemistry and Physics
University of Florida

CAMBRIDGE

®» UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521818322

© L Shavitt and R. J. Bartlett 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2009
Printed in the United Kingdom at the University Press, Cambridge
A catalog record for this publication is available from the British Library
ISBN 978-0-521-81832-2 hardback
Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



MANY-BODY METHODS IN
CHEMISTRY AND PHYSICS

Written by two leading experts in the field, this book explores the many-
body methods that have become the dominant approach in determining
molecular structure, properties, and interactions. With a tight focus on
the highly popular many-body perturbation theory (MBPT) and coupled-
cluster (CC) methods, the authors present a simple, clear, unified approach
to describe the mathematical tools and diagrammatic techniques employed.
Using this book the reader will be able to understand, derive, and confi-
dently implement the relevant algebraic equations for current and even new
CC methods. Hundreds of diagrams throughout the book enhance reader
understanding through visualization of computational procedures, and the
extensive referencing and detailed index allow further exploration of this
evolving area. This book provides a comprehensive treatment of the subject
for graduates and researchers within quantum chemistry, chemical physics
and nuclear, atomic, molecular, and solid-state physics.
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Cambridge Molecular Science

As we cnter the twenty-first century, chemistry has positioned itself as the
central science. Its subject matter. atoms and the bonds between them. is
now central to so many of the life sciences on the one hand, as biological
chemistry brings the subject to the atomic level. and to condensed matter
and molecular physics on the other. Developnients in quantum chemistry
and in statistical mechanics have also created a fruitful overlap with mathe-
matics and theoretical physics. Consequently. boundaries between chemistry
and other traditional sciences are fading and the teri molecular science now
describes this vibrant area of research.

NMolecular science has made giant strides in recent years. Bolstered both
by instrumental and theoretical developments, it covers the temporal scale
down to femtoseconds. a time scale sufficient to define atomic dynamics with
precision, and the spatial scale down to a small fraction of an Angstrom.
This has led to a very sophisticated level of understanding of the properties
of small-molecule systems, but there has also been a remarkable series of
developments in more complex systems. These include: protein engineer-
ing: surfaces and interfaces: polvimers colloids: and biophysical chemistry,
This series provides a vehicle for the publication of advanced textbooks and
monographs introducing and reviewing these exciting developments.
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Preface

“What are the electrons really doing in molecules?” This famous question
was posed by R. A. Mulliken over a half-century ago. Accurate quantitative
answers to this question would allow us, in principle, to know all there is
to know about the properties and interactions of molecules. Achieving this
goal, however, requires a very accurate solution of the quantum-mechanical
equations, primarily the Schrodinger equation, a task that was not possible
for most of the past half-century. This situation has now changed, primarily
due to the development of numerically accurate many-body methods and
the emergence of powerful supercomputers.

Today it is well known that the many-body instantaneous interactions of
the electrons in molecules tend to keep electrons apart; this is manifested as
a correlation of their motions. Hence a correct description of electron corre-
lation has been the focal point of atomic, molecular and solid state theory
for over 50 years. In the last two decades the most prominent methods
for providing accurate quantum chemical wave functions and using them to
describe molecular structure and spectra are many-body perturbation theory
(MBPT) and its coupled-cluster (CC) generalizations. These approaches
have become the methods of choice in quantum chemistry, owing to their
accuracy and their correct scaling with the number of electrons, a prop-
erty known as extensivity (or size-extensivity). This property distinguishes
many-body methods from the configuration-interaction (CI) tools that have
commonly been used for many years. However, maintaining extensivity — a
critical rationale for all such methods — requires many-body methods that
employ quite different mathematical tools for their development than those
that have been customary in quantum chemistry. In particular, diagram-
matic techniques are found to be extremely powerful, offering a unified,
transparent and precise approach to the derivation and implementation of
the relevant algebraic equations. For many readers, however, diagrammatic
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xii Preface

methods have seemed to be used arbitrarily, making it difficult to under-
stand with confidence the detailed one-to-one correspondence between the
diagrams and the various terms of the operable algebraic equations.

In order to address this situation, this book presents a unified, detailed
account of the highly popular MBPT and CC quantum mechanical methods.
It introduces direct, completely unambiguous procedures to derive all the
relevant algebraic equations diagrammatically, in one simple, easily applied
and unified approach. The ambiguity associated with some diagrammatic
approaches is completely eliminated. Furthermore, in order for a quantum-
chemical approach to be able to describe molecular structure, excited states
and properties derived from expectation values and from response methods,
new theory has had to be developed. This book also addresses the theory
for each of these topics, including the equation-of-motion CC (EOM-CC)
method for excited, ionized and electron attached states as well as the an-
alytical gradient theory for determining structure, vibrational spectra and
density matrices. Finally, the recent developments in multireference ap-
proaches, quasidegenerate perturbation theory (QDPT) and multireference
CC (MRCC), are also presented. All these equations are readily developed
from the same simple diagrammatic arguments used throughout the book.
With a modest investment of time and effort, this book will teach anyone to
understand and confidently derive the relevant algebraic equations for cur-
rent CC methods and even the new CC methods that are being introduced
regularly. Selected numerical illustrations are also presented to assess the
performance of the various approximations to MBPT and CC.

This book is directed at graduate students in quantum chemistry, chemical
physics, physical chemistry and atomic, molecular, solid-state and nuclear
physics. It can serve as a textbook for a two-semester course on many-body
methods for electronic structure and as a useful resource for university fac-
ulty and professional scientists. For this purpose, an extensive bibliography
and a detailed index are included. Useful introductory material for the book,
including detailed treatments of self-consistent field theory and configura-
tion interaction, can be found in parts of the book by Szabo and Ostlund
(1982). Additional useful sources include, among others, the monograph
by Lindgren and Morrison (1986), which emphasizes atomic structure and
includes the treatment of angular momentum and spin coupling, and the
book focusing on diagrammatic many-body methods by Harris, Monkhorst
and Freeman (1992). An interesting historical account of the development
of coupled-cluster theory was provided by Paldus (2005), whose unpublished
(but widely distributed) Nijmegen lectures introduced many researchers to
this methodology.
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1

Introduction

1.1 Scope

The book focuses primarily on many-body (or better, many-electron) meth-
ods for electron correlation. These include Rayleigh—Schréodinger pertur-
bation theory (RSPT), particularly in its diagrammatic representation (re-
ferred to as many-body perturbation theory, or MBPT), and coupled-cluster
(CC) theory; their relationship to configuration interaction (CI) is included.
Further extensions address properties other than the energy, and also excited
states and multireference CC and MBPT methods.

The many-body algebraic and diagrammatic methods used in electronic
structure theory have their origin in quantum field theory and in the study
of nuclear matter and nuclear structure. The second-quantization formal-
ism was first introduced in a treatment of quantized fields by Dirac (1927)
and was extended to fermion systems by Jordan and Klein (1927) and by
Jordan and Wigner (1928). This formalism is particularly useful in field
theory, in scattering problems and in the study of infinite systems because
it easily handles problems involving infinite, indefinite or variable numbers
of particles. The diagrammatic approach was introduced into field theory
by Feynman (1949a,b) and applied to many-body systems by Hugenholtz
(1957) and by Goldstone (1957). Many-body perturbation theory and its
linked-diagram formalism were first introduced by Brueckner and Levinson
(1955) and by Brueckner (1955), and were formalized by Goldstone (1957).
Other important contributions to the methodology, first in field theory and
then in the theory of nuclear structure, are due to Dyson (1949a,b), Wick
(1950), Hubbard (1957, 1958a,b) and Frantz and Mills (1960). Applications
to the electronic structure of atoms and molecules began with the work
of Kelly (1963, 1964a,b, 1968), and molecular applications using finite an-
alytical basis sets appeared in the work of Bartlett and Silver (1974a,b).

1



2 Introduction

More complete accounts of the history of these methods have been given by
Lindgren and Morrison (1986) and by Lindgren (1998).

The coupled-cluster method also has origins in nuclear structure theory,
with the seminal papers of Coester (1958) and Coester and Kiimmel (1960).
It was introduced to electronic structure theory and formalized by Cizek
(1966, 1969) and Cizek and Paldus (1971). A historical account of its origins
and development was given by Paldus (2005).

Additional references to the development and extensions of the many-body
methods are given in the relevant chapters.

The rest of this chapter provides some background material, including
a brief discussion of the independent-particle model and the configuration-
interaction method. We discuss the limitations of these methods and the
need for the perturbation-theoretical and many-body methods that form the
subject of the rest of this book. We also provide a preliminary introduction
to the cluster ideas that form the basis of coupled-cluster theory. Readers
in need of a more extensive introduction are referred to the excellent book
by Szabo and Ostlund (1982).

A detailed exposition of formal perturbation theory is given in Chapter 2.
A number of different derivations and approaches are included in this ex-
position in order to provide a broad foundation for the terminology and
techniques employed in this field. The many-body technique of second quan-
tization is introduced in Chapter 3, and the diagrammatic representation is
described in Chapter 4. The application of the many-body and diagram-
matic techniques to perturbation theory is described in Chapter 5, and this
is followed by proof of the crucial linked-diagram theorem in Chapter 6 and a
discussion of some practical aspects of many-body perturbation-theory cal-
culations in Chapter 7. Open-shell and quasidegenerate perturbation theory
is presented in Chapter 8. Coupled-cluster theory is discussed in Chapters 9
and 10, again including several forms of the derivations in order to pro-
vide better understanding. The calculation of properties in the coupled-
cluster method is described in Chapter 11. Several additional aspects of
coupled-cluster theory are discussed in Chapter 12, and the equation-of-
motion (EOM) coupled-cluster method for excited-state calculations is de-
scribed in Chapter 13. Finally, multireference coupled-cluster methods are
presented in Chapter 14.

1.2 Conventions and notation

Throughout this book we use atomic units, setting m = e = h = 1 where m
and —e are the mass and charge of the electron and h = h/2r is Planck’s
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Table 1.1. Terminology for excitation levels

Level Symbol Name Alternative

1 S singles mono-excited
2 D doubles bi-excited

3 T triples tri-excited

4 Q quadruples tetra-excited
5 P pentuples penta-excited
6 H hextuples hexa-excited

constant. As is customary in quantum chemistry, these constants are omit-
ted from the expressions in this book but their implied presence is needed
for proper dimensionality.

With a few exceptions, lower-case letters (a,b, ..., ¢,1,..., etc.) are used
for one- and two-particle entities, and upper-case letters (A, B,...,®, ¥, ...,
etc.) are used for many-particle entities. Operators are designated by a caret
over a roman letter (&,E,F, H, etc.), by a script upper-case letter (H, P,
etc.) or by an Greek upper-case letter (A, etc.). Vectors and matrices are
represented by boldface lower- and upper-case letters, respectively.

The acronyms used to specify excitation-level combinations included in
the different computational models have evolved, first in configuration
interaction (CI) and then in coupled-cluster (CC) theory, using a mixture of
English, Greek and Latin roots, in view of the need to provide a unique ini-
tial letter for each level, as listed in Table 1.1. For example, a CI calculation
that includes all single, double and triple excitations is described as CISDT.
The fourth column in Table 1.1 lists some alternative excitation-level names
that have been used.

1.3 The independent-particle approximation

In this section we briefly summarize several aspects of the procedures used to
obtain starting approximations for correlated molecular electronic structure
calculations. For more complete discussions and detailed derivations the
reader is referred to other sources, such as Szabo and Ostlund (1982) or
standard textbooks.

Most electronic structure calculations begin with a relatively simple ap-
proximation based on the independent-particle model. The wave function



4 Introduction

for such a model is a single Slater determinant (SD),

Pi(1)  Pe(1) - Pn(1)
oL P1(2)  ¥2(2) - ¥N(2)
VN!| . :
Yi(N) Po(N) - YN(N)
— Atbs ... U, (1.1)

where ;(p) is a spinorbital, a function of the space and spin coordinates
of the uth electron (typically a product of a spatial orbital and a spin func-
tion), and A is the antisymmetrizer. The most commonly used independent-
particle model is the Hartree- Fock (HF) or self-consistent field (SCF) wave
function, in which the spinorbitals are varied to minimize the energy expec-
tation value of the single-determinant wave function. The minimization can
be achieved by solving a set of coupled one-electron eigenvalue equations for
the spinorbitals,

Fbi = ety (1.2)

in which the Fock operator f depends on all the spinorbitals (this depen-
dence is given explicitly later in this section). Iterative procedures are re-
quired to obtain consistency between the spinorbitals used to define f and
the spinorbitals obtained as its eigenfunctions.

Because a determinant is invariant to unitary transformations of its col-
umns or rows, the SD wave function (1.1) is invariant under unitary transfor-
mations of the occupied spinorbitals {¢;,7 = 1,2,..., N} among themselves.
Therefore, any unitary transformation of the occupied spinorbitals provides
an alternative representation of the same SD wave function. The particular
representation of the wave function in which the spinorbitals are solutions
of (1.2), i.e., are eigenfunctions of f (so that the matrix representation of
[ in terms of these spinorbitals is diagonal, (v;|fl1;) = €;0;;), is called
the canonical HF wave function; the corresponding spinorbitals (including
t It was common to distinguish between the original type of Hartree—Fock solution, which

achieves the absolute minimum of the energy of an SD wave function (1.1) with respect to

any variation of the spinorbitals (subject only to appropriate restrictions in the restricted HF
case) and usually require numerical (finite difference) methods of solution as employed by

Hartree and others for atomic wave functions, and the self-consistent field form (also known

as Hartree—Fock-Roothaan or matriz Hartree—Fock), in which the spinorbitals are expanded

in a basis set and the lowest energy solution within the space generated by that basis set is
sought. This second approach converts the operator eigenvalue equation (1.2) to a matrix
eigenvalue equation for the eigenvectors of expansion coefficients. The HF solution is thus the
limiting result (the HF limait) of the self-consistent field procedure as the basis set approaches
completeness. In current usage, however, the distinction has unfortunately been lost, and the

terms Hartree-Fock and self-consistent field are used interchangeably, both commonly referring
to the basis-set expansion approach. We shall follow this practice in this book.



