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Foreword

The experimental discovery of the fractional quantum Hall effect (FQHE)
at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected
since, at this time, no theoretical work existed that could predict new struc-
tures in the magnetotransport coefficients under conditions representing the
extreme quantum limit. It is more than thirty years since investigations
of bulk semiconductors in very strong magnetic fields were begun. Under
these conditions, only the lowest Landau level is occupied and the theory
predicted a monotonic variation of the resistivity with increasing magnetic
field, depending sensitively on the scattering mechanism. However, the ex-
perimental data could not be analyzed accurately since magnetic freeze-out
effects and the transitions from a degenerate to a nondegenerate system
complicated the interpretation of the data. For a two-dimensional electron
gas, where the positive background charge is well separated from the two-
dimensional system, magnetic freeze-out effects are barely visible and an
analysis of the data in the extreme quantum limit seems to be easier. First
measurements in this magnetic field region on silicon field-effect transistors
were not successful because the disorder in these devices was so large that all
electrons in the lowest Landau level were localized. Consequently, models
of a spin glass and finally of a Wigner solid were developed and much effort
was put into developing the technology for improving the quality of semi-
conductor materials and devices, especially in the field of two-dimensional
electron systems.

The formation of a Wigner lattice has been observed for the two-dimen-
sional electron gas at the helium surface with the consequence that all sorts
of unexpected results on two-dimensional systems in semiconductors were
assigned to some kind of charge-density-wave or Wigner crystallization.
First attempts to explain the FQHE were therefore guided by the picture
of a Wigner solid with triangular crystal symmetry. However, a critical
analysis of the data demonstrated that the idea of the formation of an in-
compressible quantum fluid introduced by Laughlin seems to be the most
likely explanation.

The theoretical work collected in this book demonstrates that the Laugh-
lin wave function forms a very good basis for a discussion of the FQHE. Even

Vv



though many questions in the field of FQHE remain unanswered, this book
offers a valuable source of information and is the first general review of
the work of different groups in this field. The intense activity in the field
of high-T, superconductivity also calls for a book about the FQHE since
certain similarities seem to be emerging in the theoretical treatment of the
quantum Hall effect and that of high-T,. superconductivity.

I hope that this book will inspire scientists to new ideas.

Stuttgart Klaus von Klitzing
June 1988

\



Preface

In the field of the fractional quantum Hall effect, we have witnessed tremen-
dous theoretical and experimental developments in recent years. Our inten-
tion here is to present a general survey of most of the theoretical work in this
area. In doing so, we have also tried to provide the details of formal steps,
which, in many cases, are avoided in the literature. Our effort is motivated
by the hope that the present compilation of theoretical work will encourage
a nonexpert to explore this fascinating field, and at the same time, that it
will provide guidelines for further study in this field, in particular on many
of the open problems highlighted in this review. Although the focus is on
the theoretical investigations, to see these in their right perspective, a brief
review of the experimental results on the excitation gap is also presented.
This review is of course, by no means complete; the field continues to present
new surprises, and more theoretical work is still emerging. However we hope
that the compilation in its present form will to some extent. satisfy the need
of the experts, nonexperts and the curious.

Stuttgart, Ouln, January, 1988 Tapash Chakraborty
Pekka Pietilainen

* % %k

After the first edition of the book was published, there were several inter-
esting developments in the field of fractional quantum Hall effect. Most
notably, the experimental evidence of the spin-reversed ground state and
quasiparticles which had been predicted earlier in the theoretical studies.
Similarly, experimental verification of the fractional charge of the quasipar-
ticles is also a siginificant achievement. Magnetoluminescence experiments
are rapidly opening up an entirely new route to study the quantum Hall ef-
fect, and the elusive phase transition of the incompressible quantum liquid
state to Wigner crystal is becoming more and more transparent in experi-
ments.

Vil



On the theoretical side, fractional statistics objects — the anyons, have
fired the imagination of several researchers investigating the phenomenon
of high-temperature superconductivity. Although their relevance in that
field has not been proven, anyons gained credibility at a very early stage
as the elementary excitations in the fractional quantum Hall state. Recent
theoretical studies have indicated that going from electrons to fermions with
a Chern-Simons field results in a very useful approach to the understanding
of the behavior when the lowest Landau level is half filled by electrons.

All of these issues and more, have been discussed here to make the
present edition more up to date. A major addition in the second edition is
a brief survey of the integer quantum Hall effect which is intended to make
the book more self-contained. The emphasis is however, still as in the first
edition, to provide a complete, comprehensive review of the exciting field of
the fractional quantum Hall effect.

Madras, Oulu, July, 1994 Tapash Chakraborty
Pekka Pietildinen
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1. Quantum Hall Effect: The Basics

The quantization of the Hall effect discovered by von Klitzing et al. [1.1]
in 1980 is a remarkable macroscopic quantum phenomenon which occurs
in two-dimensional electron systems at low temperatures and strong per-
pendicular magnetic fields. Under these conditions, the Hall-conductivity
exhibits plateaus at integral multiples of e?/h (a universal constant). The
striking result is the accuracy of the quantization (better than a part in
ten million) which is totally indifferent to impurities or geometric details of
the two-dimensional system. Each plateau is accompanied by a deep mini-
mum in the diagonal resistivity, indicating a dissipationless flow of current.
In 1982, there was yet another surprise in this field. Working with much
higher mobility samples, Tsui et al. [1.2] discovered the fractional quantiza-
tion of the Hall conductivity. The physical mechanisms responsible for the
integer quantum Hall effect (IQHE) and the fractional quantum Hall effect
(FQHE) are quite different, despite the apparent similarity of the experi-
mental results. In the former case, the role of the random impurity potential
is quite decisive, while in the latter case, electron-electron interaction plays
a predominant role resulting in a unique collective phenomenon.

In the following chapters, we shall briefly describe the theoretical and
experimental developments in the QHE. It should be mentioned, however,
that the QHE has been one of the most active fields of research in condensed
matter physics for over a decade. It is therefore, quite impossible to describe
here all the details of the major developments. Our aim here is to touch
upon the most significant theoretical and experimental work to construct
a reasonably consistent picture of the QHE. For more details on the topics
discussed, the reader is encouraged to read the original work cited here and
some of the reviews available in the literature [1.3-11].

1.1 Two-Dimensional Electron Gas

The major impetus in the studies of the QHE is due to experimental re-
alization of almost ideal two-dimensional electron systems. The electrons



are dynamically two-dimensional because they are free to move in only two
spatial dimensions. In the third dimension, they have quantized energy lev-
els (in reality, the wave functions have a finite spatial extent in the third
dimension [1.12]). In the following, we provide a very brief discussion on the
systems where the electron layers are created. For details see the reviews
by Ando et al. [1.12] and Stormer [1.13].

Electron layers have been created in many different systems. Electrons
on the surface of liquid helium provides an almost ideal two-dimensional
system [1.14,15]. They are trapped on the surface by a combination of an
external field and an image potential. The electron concentration in this
system is, however, very low (10° — 10° ¢cm™2) and the system behaves
classically. The high-density electron systems where the QHE is usually ob-
served are typically created in the Metal-Oxide-Semiconductor Field Effect
Transistor (the MOSFET) and in semiconductor heterojunctions.

A schematic picture of an n-channel Si-MOSFET is shown in Fig. 1.1(a).
The system consists of a semiconductor (p-Si) which has a plane interface
with a thin film of insulator (SiO2), the opposite side of which carries a
metal gate electrode. Application of a voltage (gate voltage V) between
the gate and the Si/SiOj interface results in bending of the electron energy
bands. For a strong enough electric field, as the bottom of the conduction
band is pushed down below the Fermi energy FEp, electrons accumulate
in a two-dimensional quasi-triangular potential well close to the interface
[Fig. 1.1(b)]. As the width of the well is small (~ 50A), electron motion
perpendicular to the interface is quantized but the electrons move freely
parallel to the interface. In the plane, the energy spectrum is

Wkt

. _ 0

ei(k) =¢; + Tk

where m* is the effective mass of the electrons, k‘“ is the two-dimensional
wave vector and E? is the bottom of the corresponding subband. The system
is called an inversion layer because here the charge carriers are the electrons
while the semiconductor is p-type.

At low temperatures (kT' < AE, the subband spacing) the electrons are
trapped in the lowest subband and the system is purely two-dimensional.
The MOSFET is quite useful in the present study because by varying the
gate voltage the electron concentration can be varied within a wide range
(np ~ 0 —103cm~2).

Two-dimensional electron layers are also created in semiconductor het-
erostructures at a nearly perfectly lattice-matched semiconductor/semicond-
uctor interface. One such widely used system is the GaAs/Al,Ga;_;As (0 <
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Fig. 1.1. (a) Schematic view of a Si-MOSFET and (b) energy level diagram

x < 1) heterostructure. The lattice constants of GaAs and Al,Gaj_,As are
almost the same so that the interface is nearly free from any disorder. The
band gap of the alloy is wider than that of GaAs and it increases with
the aluminum concentration z. Carriers in the neighborhood of the hetero-

Fig. 1.2. Energy diagram at a GaAs-heterostructure interface



junction transfer from the doped AlGaAs alloy across the interface to the
low-lying band edge states of the narrow band gap material (GaAs). The
electric field due to the charge transfer bends the energy bands as shown
in Fig. 1.2. A quasi-triangular potential well (~ IOOA) formed in the GaAs
traps the electrons as two-dimensional carriers.

The mobile carriers are spatially separated from their parent ionized
impurities via modulation doping. This leads to very high carrier mobil-
ities and, in fact, the FQHE was discovered in these high-mobility GaAs-
heterostructures [1.13]. However, unlike MOSFETSs the electron concen-
tration in heterostructures can be varied only within a very narrow range.
Carrier densities in these systems typically range from 1 x 10'em™2 to
1 x 102em 2.

1.2 Electrons in a Strong Magnetic Field

Let us begin with the problem of a free electron (with effective mass m*) in
a uniform magnetic field B. The Hamiltonian is then written

Ho = (Hi%—ﬂg) /2m* (1.1)

e
where, II = —ihV + —A is the kinetic momentum and A is the vector

c
potential which is related to the magnetic field in the manner, B =V x A.
Following Kubo et al. [1.16] we introduce the center coordinates of the
cyclotron motion (X,Y) as

X=z-¢ Y=y—1q (1.2)
where
€= (c/eB)T,, n=—(c/eB)L, (1.3)

are the relative coordinates. It can be easily seen that (£,7) represents a
cyclotron motion with frequency
eB
We = (1.4)

b
m*c

(cyclotron frequency). Defining the magnetic length

o= (1)’ (15)

(cyclotron radius) and from the commutation relation



it is clear that £ and 7 are subject to an uncertainty of order ¢y3. The
Hamiltonian (1.1) is now rewritten in terms of (§,7) as

_ hwe
- B

Ho (€ +n?) (1.6)

whose eigenenergies are the discrete Landau levels [1.17,18]
En=(n+3)hwe, n=0,1,2,... (1.7)
The Hamiltonian (1.6) does not contain (X,Y’) which means that electrons

in cyclotron motion with different center coordinates have the same energy.
The center coordinates also follow the commutation rule, [X,Y] = i63.

. 1 .
Choosing now the Landau gauge such that the vector potential A has
only one nonvanishing component, say, A, = Bz, the Hamiltonian is

2
. eB
pi + (py+ Tm) ] . (1.8)

The variables are easily separable and an eigenfunction is written in the
form

Ho =
¢ 2m*

¢ = e"x(z) (1.9)

where the usual identification is made, p, = —ihd/0y — hk,. The function
x(z) is the eigenfunction of the time-independent Schrédinger equation

h? ‘
—ﬁx" + %m*wcz (z — X)*x = Ex(z) (1.10)
where X = -kyfg. The above equation is easily recognized as the Schrod-

inger equation corresponding to a harmonic oscillator of spring constant
hwe = h?/m* (%, with equilibrium point at X.

The eigenfunction (ignoring the normalization factor) is now written
box = eFv¥ exp [—(z - X)Z/QZ%] H, [(x — X) /4] (1.11)
with H,, the Hermite polynomial. The functions are extended in y and

localized in z. The localization remains unaffected under a gauge transfor-
mation. When the system is confined in a rectangular cell with sides L

1 The other choice of gauge viz. the symmetric gauge is discussed in Appendix A



