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RECENT PROGRESS IN FOURIER ANALYSIS

The following contributions were presented at the Seminar on Fourier
Analysis which was held in El Escorial from 30 June to 5§ July 1983.
This meeting was sponsored by the Asoc<acidn Matemdtica Espafiola
with financial support from the Comisidn Asesora de Investigacidn
Cientifica y Téenica (project 4192).

A decisive factor with respect to the organization was the financial
help, together with the facilities, provided by the Vicerrectorado
de Investigacidn of the Universidad Autdnoma de Madrid.

The articles we present give a good idea of how work in the area has
evolved and of the scientific charactier of the meeting. The friendly
and cordial atmosphere meant that the organization, far from being a
chore, became a pleasurable experience. For this we owe our

gincerest thanks to all participants.

Special thanks must also go to the invited speakers for their magni-
ficent collaboration, and to Caroline, without whose presence we

hate to think what could have happened!

We should also liké to express our gratitude to our colleagues in
the Divisidn de Matemdticas in the Universidad Autdnoma de Madrid,
for their help in correcting proofs, and to Soledad, for typing the

manuscript.

The Editors
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FUNCTIONS OF LP-BOUNDED PSEUDO-DIFFERENTIAL
OPERATORS

Josefina Alvarez Alonso
Universidad de Buenos Aires

The aim of this paper is to construct a functional calculus over
an algebra of LP-bounded pseudo-differential operators acting on
functions defined on a compact manifold without boundary.

The operators we consider here depend on amplitudes or symbols
with a finite number of derivatives, without any hypothesis of homo-
geneity. The manifolds where the operators act are also of class CM
for a suitable M. In this way is it possible to control the number
of derivatives of f that we need in order to give meaning to £f(A),

when A is a self-adjcint operator in that algebra.

Indeed, this program was carried out in [1] and [2] when p = 2.
In [1] an algebra of pseudo-differential operators acting on func-
tions defined in R™ is constructed. The main tool to do that is the
sharp L2 estimates obtained by R. Coifman and Y. Meyer in [3].
Then, functions of those operators are defined by means of the H.
Weyl formula (see [4], for example). Since it seems not to be
possible to obtain directly a polynomial estimate for the exponential
exp(-2nitA) 1in terms of t, a roundabout argument is employed by
introducing an adapted version of the characteristic operators de-
fingd by A. P. Calderén in [S5].

All this machinery is extended in [2] to non-infinitely differen-
tiable compact manifolds without boundary.

In order to get the LP version of these results the first thing
to do is to obtain the analogous of the algebra constructed in [1].
The main point is to observe that amplitudes in a subclass of S$,1
give rise to operators on which the classical theory of Calderdn and
Zngdﬁd works (see [6]). Unfortunately as far as I know, it is an
open question to get in the euclidean case a non trivial estimate for
the exponential exp(-2mitA). However, when the operators act on

3



4 J. Alvarez Alonso

functions defined in compact manifolds, a suitable estimate can be
obtained and so, a non-infinitely differentiable functional calculus
runs.

Given 0 <8 <1, k=1,2,..., let

k/1-6 if this is an integer

[k/1-6] + 1 if not

We will consider operators K acting on S in the following way
Kf = Nf1 f e 2MiXE oy E)F(E)dE + RE
3=0 .

where

i) The function p. belongs to the class Sj; that is to say,
pj is a continuous function defined on R™ x R™; it has continuous
derivatives in the variable & wup to the order n+N+2-j and each
function Dg p: has continuous derivatives in x,f{ up to the order
2[n/2]+N+k+2-j, satisfying

anBnY

: sup —F—e — < »
X, £ e R (1+|&]) J(T-8)+|a|s-|B+Y|
a, B, ¥

ii) For 1 < Pg < 2 fixed, R is a linear and continuous opera-
tor from LP into itself for Pg <P < pb. Moreover, R and the
adjoint R* are continuous from LP into Lﬁ, where Lﬁ denotes
the Sobolev space of order k and pé is the conjugate exponent

of Po-
Let Mk be the class of the operators K.

Now, let X be a differentiable compact manifold of dimension n
and class CM, M= 2[n/2] +n+2N+k+5, without boundary; X has a
measure u which in terms of any local coordinate system
X = (x1,...,xn) can be express as G(x)dx1 N dxn, where G > 0

is a function of class cM-1,

We will introduce the following notation.

Let U,, U, be open bounded subsets of X or R let
¢ : Uy~ U, be a diffeomorphism of class CM; if f 1is a function
defined on the ambient space of UZ’ ¢*(f) will denote the function



Functions of ¢.D.0. §

defined on the ambient space of Ul which coincides with f°¢ on
U, and vanishes outside Uj. On the other hand, if A 1is an ope-

rator acting on functions defined on the ambient space of U by

2!
$*(A) we denote the operator acting on functions defined on the

‘ambient space of U1 as

-1=x

o*(A)(£) = ¢™[AC™ * ()]

Now, we are ready to define classes of operators on X.

Given 1 < Py < 2, R belongs to Rk(X) if R 1is a linear
continuous operator from LP(X) into itself for Pgp <P < pa and
R, R* map continuously LP(X) into LE(X) for py <P < pé.

R(X) is a self-adjoint Banach algebra with the norm

£ ®
R = |R + |R + |R + |R '
Rlg, = IRl p o+ IRI b o IRM o+ R 0
L %L L %L, L %L, L
Now, given 1 < Py < Z; Mk(X) is the class of linear continuous
operators A from LP(X) into itself for Pp <P < pb, which
satisfy the following two conditions

i) Given ¢],¢Z € C%(X) with disjoint supports, the operator
¢1 A ¢2 belongs to Rk(Xl. Here ¢1, ¢2 stand for the operators
of multiplication by the function b1s 9,5 respectively. ¢

ii) Let UC X be an open subset and let ¢ : U U1 be a
diffeomorphism of class CM extendable to a neighborhood‘Pf U,
wherg U1C: R". There exists an operator A1 € Mk such that if
61,0, € Cp(U),

_ %
oy A, = 0y 0™(A0,

Mk(X) is a self-adjoint algebra and Rk(x) is a two-sided ideal of
Mk(X); moreover, operators in Mk(X) are continuous from Lg(X)
into itself for p; < p < py, 0 <mck

It is possible to endow Mk(X) with a complete norm. In order to
avoid technical details, we will not precise the definition. With
this norm Rk(X) is continuously included in Mk(X) and Mk(x) is

_continuously inclpded in L(LE(X)), the space of linear and
continuous operators from Lg(x) into itself, for Pg £P < pé,'
0 <m< k.



6 J. Alvarez Alonso

THEOREM 1. Let p,, k and n be such that l/p0 - k/n < 1/2.

Given a self-adjoint operator A € Mk(X) and. a function £ in

the Sobolev space L., where s > 2u + 5/2, u = 2[n/2]+n+k+
+ N(N+3)/2+4, the Bochner integral

[” o-TitA

) -

f(t)dt

belongs to Rk(X) and coincides with f(A) calculated by means of
the spectral formula in L(iz(x)).

Remarks:

a) It is possible to impose on f additional conditions under-
which the operator f(A) belongs to Rk(x).

b) When Py = 2 the above theorem remains true with s > uy + 3/2

c) The Weyl's formula also allows to define functions of a tuple
of non-commuting self-adjoint operators.

We will include here the proof of the theorem 1 in a particular
but significant case.

Suppose that &§ = 0, k = 1; it follows that N = 1. It is
clear that theorem 1 can be deduced from a suitable estimate for
lexp(-27itA) |y x) in terms of t € R.

! 1 ,

In order to get this estimate, some notations and results will be
needed. We fix in X coordinate neighborhoods U., diffeomorphisms

¢j 3 Uj + ¢j(Uj) of class CM, where M = 2[n/2]+n+8, functions

6 € cf.), 8, >0 and a finite partition of unity {ny} of

j
class CM, such that supp(ej)C: U; whenever supp(ej) n supp(ei)#

$0; 8; =1 ina neighborhood of supp(nj) if j =1 or if

fSUPp(ﬁj)I1 supp(n;) # 0.

‘ ﬁow, we define an space of symbols for operators in M1(X). More

exactly, for each j we consider the restriction to ¢j(Uj) of a

- function p(J) e 5°. We define a norm of such a restriction as

.
| ppip} P (x,6)]

()Y = sy
' sup (1 . ig;)'lf+s[

i ' ir

'ﬁhere the supremum is taken over x € ¢j(Uj), £ € R", l&] < n+3,
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,‘W,S[ < 2[“/2]*4, J

We note H,(X) this space. w:itih the pointwise multiplicaticn

1

). U]y« g0

2 product, 51(X) becomes a commutative Banach algebra.

. Let H = (p(J)) be an _element in E1(X); we suppose that

ETE) i¢ @ real function. Then, if t € R,

taxp(-2mitH)] < Cl v+ JHD O+ Tt ¥

C‘w C(X) > 0, w = 2[n/2]+n+7.

Since ®,(X) is a Banach algebra, the exponential exp(-2mitH)
is well def%ned; moreover it is equal to exp(—Zwitp(j))..

Azcording to the norm that the space N1(X) has, the co%clusion
foilows. .

Yow, we will introduce the space M,(X) in the following way
&nrg}ement K of le(X) is an operator R in 21(X) and a vector
(p'’) in B, (X) subject to the condition-that if UM Uy 0
and ?ij_= ¢j°¢;1, then '

X
1]

) = 61,00 in e in Uy,

Such an element K will be denoted as {(p(j)j,R}.

We define a norm in DW1(X) as follows

1€, - LUy + I7ig,
Given K eIM1(X) we define an operator A(K) in the following way

®
= .0-(A.)0.
A(K) g nJCbJ(AJ) j R
where ’ :

e 2mixE (3) x5y R(p)a if x e ¢;0U))

(Ajf)(X) =
0 if not
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It can be proved_that A(K) belcunpr e @,(X). Moreuse. "he linras
map

-

M (X)) —f 9, (D)
K ——- A(K)

is irnto and continuous. Furtbermore. if A e‘Ml(X) iz self-adjoint,
A = A(K) for some K = {(p(J)LR}, with p(J) real for all j.

It is possible to define a product in IM,(X) in such a way that
Dd1(x) becomes a Banach algebra and the map A above is a conti-
npous homomorphism of algebras.

Finally, let us consider the maps J?
Q -
™ 1 Xy — IN‘ Xy ———— M 1()()
(R — pU)) —— (pY),0

2 1s a continuous homomorphism of algebras and the linear map Q,
is a right continuous inverse of Q.

THEOREM 2. Suppose that 1/p0 - 1/n < 1/2.

Let H = {(p(j)),R} be an element of ]M](X)_such that A(H)
15 a se.f-adjoint operator and the functions p(J are real for all

j- Then; tf t eR,

lexp(-2niti)] < CLC1 + [Hly ) (1 + [t])]2n?

1
where C = C(X) > 0, u = 2[n/2]+n+7.

Proof

Acgording to the notations above, we set A = A(H), K = Q(Hj =
= pU)) e m0.

We assert that

e-2w1tH - Q1‘(e-ZTT1tK)

it an element of the form {(0),R(t)}.

In fact, since @ 1is a continuous homomorphism of-algebras and -:

Q4 is a right inverse of Q, we have

Q[e—thH _ 91(e~2n1tK)] - e 2mitK Qﬂl(e'ZHItKS = 0.
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On the other hand, since Q, 1is a continuous map, according to the’
lemma it suffices to estimate the norm of {(0),R(t)} in IM1(X),
which coincides with the norm of R(t) in ‘R1(X).

We have

n

R(t) A[e-ZTritH . 91 (e-Z"-YitK)]

. oo 2TitA (e”2TitKy

- AQA‘

I1f we denote with ﬁ(t) the derivative of R(t) with Tespect to t,

we get
R(t) = e 2T ania) - ae, (72" K (L2mik)) -
[e 2™ _ h (e 2K (L2min) + g (e 2K (2nin) -
- Aoy (e MK C2nik)) = R() (-2miA) + By () M
Since
B,(t) = Afn, (e 2"K) (Laminy - o (e 2K (L2mik))]
and

a[e, (e 2" Ky (c2nin) - o, (e 2 K (2nik))) = 0,

we deduce that Bl(t) belongs to R1(X) for each t.
Thus,

-2mitK -2nitK

|B1(t)|R1 = ]2, (e ) (-2miH) - o (e ('Z"iK))IIM1

o
IA

cfar + |HkM1)(1 + [tHIH
where C =iC(X) > 0.

Since R(0) = 0, from (1) it follows that

3 t ;
R(t) = I B](s)e'z"l(t's)A ds (2)
o .

But we can also write-

R(t) = (-2zmiAje 2TitA pg (e 2K (L 24ik))
or & '

v

7 R(Y) = (-2miA)R(E) + B,(t)
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where Bz(t) € R1(X) for each t and

13,001 < [0+ My Y0+ 23], e = o0 > 0

So,
. t N
3' R(1) = I e-an(t-S)A Bz(s)ds (3)
! o)
or
* t 2mi(t-s)A
R7(t) = J Bz(s)e ds (4)
o

where * denotes the adjoint.
Now, suppose we show that

-2mi(t-s)A

jom2miltmeldy
(o]
L °,L

We will get the same estimate for

<l My 10+ e es)

[

Ie-an(t—s)Al ! pr
L 2.1 9,
Thus, according to (2) and (4), we can deduce that

2u+2
IR(O 5. < L+ [HIy Y+ [T
1 1
So, it remains to prove (5).

From the definition of the operator R(t), it is clear that i~
suffices to obtain the estimate

'IR(t)I B

< e[« Iy O+ [eh]¥
. |

(o] (o]

» L

But accordiné.to the hypothesis 71/p0 - 1/n < 1/2, the Sogglev
immersion theorem provides the continuous inclusion of LT (X3 riiee
LZ(X); moreover, since Pg < 2, we also have a continuous injec
tion from LZ(X) into LpO(X). Thus, the desired estimate
follows from (3).

This completes the prosf of the thecrem 2.
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ON PROBLEMS RELATED TO THEOREMS A and B8
WITH ESTIMATES

E. AMAR
Université de Bordeaux

Introduction

We are interested in theorems of type Cartan A and B, but
with estimates on the growth of the functions.

Type A problems

a) The caracterisation of the zero set of a holomorphic func-

tion in a given class. G. Henkin and H. Skoda gave, independently, a

complete answer for thic< problem in the case of the Nevanlinna class
of the unit ball B of €" ,[1{], (18]; N. Varopoulos studied the
case of the Hardy classes HP of the unit ball [19].

All of them used the P. Lelong's method leading to solve a

99 equation with estimates.

b) Another example of type A problem is the corona problem:

let fl"“’fk be bounded holomorphic functions in the unit ball of
¢ such that: '

[£,0 +. .+ lfkl >8>0 in B;

are there 8128y bounded holomorphic functions in B with:
f1g1 +o..t fkgk =17

This problem was solved in 1962 by L. Carleson [9] in the case
n = 1; L. Hormander [14] showed that the problem can be replaced
.by the problem of solving a 3 equation with bounded solution, and
in 1979 T. Wolff gave a very simple proof of the Corona in one va-
riable. We will show in §1, in generalizing the proof of Wolff to
the unit ball of Cn, that in fact it is a 3% equation we are
led to solve. liInfortunately we have not the complete answer but
the following:

Theorem [ﬂ. Let f = (f],...,fk), k functions in the Hardy class
13




