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Foreword

This book 1s intended for physicists who wish to familiarize themselves with

the methods of functional analysis. These methods are extremely fraitful,
but they cannot be properly used if one knows only uncounected recipes,
ignoring, moreover, their conditions of applicability. That is not to say that
the physicist has to be enslaved by a paralyzing rigor or indulge in a barren
formalism. I have therefore sought to avoid the inflation of terminology, the
introduction of concepts unnecessary to any further development, or proofs
of too general a nature. Breaking away from the definition-theorem-proof
style of exposition, T emphasize the practicality of the results, illustrating
them with several examples. In order to assimilate a theorem, it is advisable
to study the examples and to attempt to do the exercises, the solutions of
which are provided, before tackling its proof.

This book 1s based on the course taught at the Ecole Supérieure de
Physique et de Chimie in Paris. It is a modified and augmented second ver-
sion of Analyse Fouctionnelle: Une Introduction pour Physiciens, Ellipses,
Paris 1984. The prerequisite is a first course in analysis.
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Notations

The first digit refers to the number of the chapter in which the notation
occurs for the first time, and the second refers to the section within the
chapter. A stands for appendix, N for note, and P for problem.

T € A: 7 is an element of the set A4, 1.1

{z|P(z)}: the set of those  with property P, 1.1

V: for any, 1.1

A C B: set A is a subset of the set B, 1.1

U, N: union, intersection of sets, 1.1

14 or xa: the characteristic function of the set 4, 1.1

0: the empty set, 1.1 )

{a}: a set having a as unique element, 1.1

AC: the complement of A, 1.1

A — B: the set of elements of A not in B, 1.1

AAB = (A—- B)U(B — A): the symmetric difference of the sets A and B,
1.1

P(A): the set of all subsets of A, 1.1

A X B: the cartesian product of the sets A and B, 1.1

(z,y): an ordered pair, 1.1

f(z): the value of the mapping f at z, 1.1

f(A): the image of the set 4, 1.1

f~Y(B): the preimage of the set B, 1.1

z — f(z): the mapping (or the function) f, 1.1

f~1(y): the preimage of a one-clement set {y}, 1.1

o-algebra: a class of sets closed under countable unions and complements
and containing the empty set, 1.1

S(E): the o-algebra generated by £, 1.1

(X, A): the measurable space consisting of the space X and the o-algebra
A, 1.1

R: the set of real numbers, 1.1

R: the extended line, that is {—co} URU oo, 1.1

C: the set of complex numbers, 1.1

la, b, [a, b]: open, closed interval, 1.1

(a, b[, ]a, b]: semiopen intervals, 1.1

ix
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sup,e4 f(2), infreq f(2): supremum and infimun of f in A, 1.1

(fn): a sequence of mappings, 1.1

lim,, —co fn: the limit of the sequence (f,), 1.1

limsup f,, liminf f,: the upper and lower limits of the sequence (f,), 1.1
fog: composed mapping of f and g, 1.1

f*, f: positive, negative part of f, 1.1

R: real part, 1.1

3: imaginary part, 1.1

r ¢ A: z is not an element of the set A, 1.2

R, : the set of nonnegative real numbers, 1.2

u: positive measure, 1.2

(XX, A, p): the measure space consisting of the space X, the o-algebra A
and the measure i, 1.2

¢(1): the length of the interval I, 1.2

m*: the outer measure, 1.2

m,: the inner measure, 1.2

m: the Lebesgue measure, 1.2

A4a={r+alre A} 12

zRy: equivalence relation, 1.2

Q: the set of rational numbers, 1.2

P <= @Q: P is trueif, and only if, @ is true, 1.2

N: the set of positive integers, 1.2

f{a —0): the left-hand limit, that is, the limit of f(z) when z — a and
r<a,l2

f(a+ 0): the right-hand limit, that is, the limit of f(z) when # — @ and
x>a,l2 )

a.e.: almost everywhere, that is, except on a negligible set, 1.2

[ fdp: integral of f with respect to p, 1.3

J fdm or [ f(z)dm(z) or [ f(x)da: integral of f with respect to the
Lebesgue measure, 1.3

Z: the set of integers, 1.3

fA fdp: integral of f on the measurable set 4, 1.3

E(£): mathematical expectation of a random variable, 1.3

V(€): variance of a random variable, 1.3

tf]: absolute value of the real or complex function f, 1.3

fab f(z) dz: Riemann integral of f on [a,b], 1.3

L}: the vector spacc of integrable functions with respect to the measure i,
1.3

Jn: Bessel function of the first kind of order n, 1.4
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A v pmdurr nicasure, 1.5

(X x YA Q@ B): product of the measurable spaces (X,.4) and (Y, B), 1,5
(X %Y, A& B, peov): product of the measure spaces (X, A, u) and (Y, B, v),
1,5

E, = {yl(r.y) € E}: z-section of the set E. 1.5

EY = {z|(z,y) € E}: y-scction of the set E, 1.5

fz: x-section of the function f, 1.5
f¥: y-section of the function f, 1.5
[ fducrv = [ [ fle,y)du(x)du(y): integral with respect to a product

measure, 1.5
M: monotone class, 1.5
wy(x): oscillation of f at z, 1.A
P = @Q: P implies (), 1.N2
[ F1l: norm of f, 1.N4
I Euler Gamma function, 2.1
LP(X): the vector space of mcasurable functions defined on X such that
[|f§" di < 00, 2.2
LP(X): the normed vector space of measurable functions defined almost
everywhere on .\ such that [ |f|Pdy < 00, 2.2
f: the class of functions equivalent to f, 2.2
0: the class of functions equal to 0 a.e., 2.2
Hfilp: the LP-norm of f, 2.2
LP(X). the vector space of essentially bounded measurable functions de-
fined on X, 2
£P: the space of scquences (x,, ) such that (|z,|?) is convergent, 2.2
d(f.q): distance from f to ¢ in a metric space, 2.2
ess sup f: the essential supremun of f, 2.2
L;2(X): the normed vector space of essentially bounded measurable func-
tions ucqw*d almost everywhere on X, 2.2
([( ; distance hetween the point @ and the set 4, 2.3
tbo (Insurr’ of the set A, 2.3
. the interior of the set A 2.3

.

My e A

. Euler Beta funection, 2.3

Fourier transform of the fanction f, 2.4
the umm’( X lOn]‘ll’an of x, 2 -1

tn = O(n*): w,n* is bounded,
L(j ): anlar'«- transform of a inn('tmn Fi2.5
f: the Heaviside funcrion. 2.5

{r iy} sealar produet of rand y, 3.1
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|z]|: norm of the vector z, 3.1

Lﬁ(X): the Hilbert space of square integrable functions defined almost
everywhere on X, 3.2

Pp(z): projection of the vector z on the subspace F', 3.2
+ E': the topological dual of the space E, 3.2

P,,: the Legendre polynomial of degree n, 3.3

PP Jacobi polynomial, 3.3

IAE Laguerre polynomial, 3.3

H,,: the Hermite polynomial of degree n, 3.3

e, Gegenbauer polynomial, 3.3

T,,U,: Chebyshev polynomials, 3.3

¢%: the Hilbert space of sequences () such that (|z,|?) is convergent, 3.3
D,,: the Dirichlet kernel, 3.3

F,: the Fejér kernel, 3.3

(E,d): metric space, 3.N2

C: the space of infinitely differentiable functions having a bounded (com-
pact) support, 4.1

D = C°: the space of test functions, 4.1

w: a test function, 4.1

T:p — T(p): the distribution T, 4.1

D': the space of Schwartz distributions, 4.1

L}, : the space of locally integrable functions, 4.1

Ty: the regular distribution associated to the function f, 4.1
é: the Dirac distribution, 4.1

Pv: Cauchy principal value, 4.2

Pf: pseudofunction, 4.2

Fp: Hadamard’s finite part, 4.2

fs: characteristic function of the domain S(z;,z523) > 0, 4.2
§,: the Dirac distribution on a surface, 4.2

A, E, D: tridimensional vectors, 4.2

n: unit tridimensional vector, 4.2

V: nabla, 4.2
"V f: gradient of f, 4.2
‘V.D: divergence of D, 4.2
VXE: curl of E, 4.2

S @ T: the tensor product of the distributions S and T, 4.4
S # T: the convolution of the distributions S and T, 4.4
supp f: the support of the function f, 4.4

B: Euler Beta function, 4.4
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St a circle, 4.5
cx(T'): Fourier coefficient of the distribution 7', 4.5
T: Fourier transform of the distribution T, 4.6
T: inverse Fourier transform of the distribution T', 4.6
L(T): Laplace transform of a distribution T, 4.7
~v: Euler constant, 4.7
CR: canonical regularization, 4.P4
X: the position operator, 5.1
P: the momentum operator, 5.1
D 4: the domain of a lincar operator A, 5.1
R 4: the range of a linear operator A, 5.1
I: the identity operator, 5.1
A~! the inverse of A, 5.1
IIA]l: the norm of the lincar operator A, 5.2
[A, B] = AB — BA: the commutator of The operators A and B, 5.2
B(E): the Banach algebra of the lincar operators on E, 5.2
A: extension of the operator A, 5.2
Amn: matrix element of a bounded linear operator 4, 5.2
P: projection operator, 5.2
At: the adjoint of the operator A, 5.2
F£: Fourier or Fourier-Plancherel operator, 5.2
At A: creation and anuihilation operators, 5.2
G a: the graph of the operator A, 5.2
A: the closure of the operator A
R\(A): the resolvent of the operator A, 5.5
p(A): the resolvent sct of the operator A, 5.5
o(A): the spectrumn of the operator 4, 5.5
Po(A): the point spectrum of the operator A, 5.5
Cao(A): the continuous spectrum of the operator A, 5.5
Ro(A): the residual spectrum of the operator A, 5.5
E, & E,: direct sum, 5.5
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Chapter 1

Measure and Integration

Within the franework of Riemann’s theory of integration, the validity of
) & A

o0 oo
/ lim fp{a)de = lim / Fala)dae,
J_ n—o< n—oo N

o0 -0

the formula

when (f,) 15 a nonuniformly convergent sequence of Riemann-integrable
functions, was extensively discussed at the end of the nineteenth century.
The results obtained paved the way for Lebesgue’s theory of integration.!
This more general theory, better adapted for dealing with limit processes,
allows the interchange of integral and limit in very general circumstances.
The concept of measure plays a crucial role in Lebesgue’s definition of the
mtegral. Apart from Lebesgue’s measure, which is a generalization of the
notion of length, we shall consider different types of measures such as the
Hausdorft measure. This particular measure is appropriate for Cantor-like
sets found 1u many applications.

The most important results of this chapter are Lebesgue’s dominated
convergence theorem and Fubint’s theorem. They are illustrated by many

examples to show their wide applicability.

1. Measurable Functions

The theory of integration constriwcted in this chapter applies to measurable
functions. Theoreins 3 and 4 show that the class of measurable functions is
very large; in physics, it is very unlikely that one would have to deal with

nomncasurable functions.

1 c. N e .
" On the origins and development of Lebesgue’s theory, see T Hawkins.
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Definition 1. A class A of subsets of a set X 1s said to be a o-algebra
(sigma algebra) in X if

(1) X belongs to A,

(2) any countable union of elements of A belongs to A,

(3) the complement of any element of A4 is in A.

From (1) and (3) it follows that the empty set @ is in A; and from (2)
and (3) it follows that any countable intersection of elements of A is in A.

If A and B belong to A, then A— B = ANB® and AAB = (A - B)U
(B—A)arein A

The definition of a g-algebra is similar to the definition of a topology
(see Note 1). There is, however, an essential difference: the complement of
an element of a o-algebra belongs to the o-algebra, but the the complement
of an open set is not an open set.

Let £ be a class of subsets of X; the set of all g-algebras containing £
is not empty since it contains, at least, P(X). The intersection of all these
o-algebras is a o-algebra (see above), and, therefore, there exists a smallest
o-algebra containing €. This o-algebra is called the o-algebra generated by
£, it is denoted S(£&).

Theorem 1. Let f be a mapping from X into Y, and let B be a o-algebra
inY, then A= f~'(B) is a o-algebra in X .

This result readily follows from the elementary formulas of set theory
(see Note 2).

Definition 2. Let A be a o-algebra in a space X, then the pair (X, A)
1s called a measurable space, and the elements of A are called measurable
sets.

Definition 3. Let (X, A) and (Y, B) be two measurable spaces; a mapping
f from X into Y is said to be A-B measurable® if, for any B in B, f~(B)
belongs to A.

In other words f is A-B measurable if f='(B) C A.

Theorem 2. Let f be a mapping from (X, A) into (Y, B), and let £ be
a class of subsets of Y generating the o-algebra B; then f is measurable if,
and only if, f71(&) C A.

Let us first prove the following lemma.

Lemma. Letf be a mapping from X into Y, and let £ be a class of subsets

of Y; then f=1(S(&)) = S(f1(E)).

2 Or, simply, measurable if there is no ambiguity.
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That 1s, the preimage of the o-algebra generated by £ is the o-algebra
generated by the preimage of £.

From Theorem 1, it follows that f~!(S(€)) is a o-algebra. 1t con-
tains f~'(€) and, therefore, S(f~'(£)), which is the smallest o-algebra
containing f~1(&). Thus

f7H(8(8)) 5 8(F71E))
But (see Note 2), the set
{BIBCY,f/(B) e S(f71(£)}
is a o-algebra S’ which contains £ and, therefore, S(£). Thus

F7HS(E) c S c S(fF71(E)),

which completes the proof.
From this lemma, it follows that

fB) = f7H(8(E) = S(f71(€)).

Hence, f~!(B) C A if, and only if, f~}(€) C A.
Corollary 1. Let (X,.A), (Y,B), (Z,C) be three measurable spaces, and
let f and g be, respectively, two measurable functions from (X, A) into
(Y, B) and from (Y, B) into (Z,C); then g o f is a measurable function from
(X, A) into (Z,C).

This is obvious.
Definition 4. Let (X,A) and (Y,B) be two measurable spaces; then
(X xY, A® B), where A ® B is the o-algebra generated by {A x B|A €
A, B € B}, is called the product of the measurable spaces (X, A) and (Y, B).
Corollary 2. Let (X, A), (Y1,B1) and (Y2, B2) be three measurable spaces,
and let f be a mapping from X intoY; X Y3; f is measurable if, and only
if, the mapping p; o f and py o f, where p, and p, are, respectively, the
canonical projections of Y7 x Y, on Y} and Y;, are measurable.

For any ordered pair (y;,y2) in Y] x Y2, we have

p1:(y1,y2) = 0 and p2: (y1,y2) — Y2.

Since py(B;) and p,(B;) are both contained in B, ® B, (Definition 4), p;
and p, arc measurable. f being measurable, as a consequence of Corollary
1, p1 o f and p, o f are, therefore, measurable.
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Conversely, if p; o f and p, o f are measurable,
(VBy € By) (VDy€By)  fTH(B1x B)€ A

smcee

B x By = (pro )" (Bi)N (p2 o f) (D)

and, therefore, f is measurable (Theorem 2).
Ezxample 1. Borel measurable mappings. Let X be a topological space,
and let B be the o-algebra generated by the open sets of X. The elements
of B are called the Borel sets of X. The closed sets of X are Borel sets, and
so are all countable unions of closed sets and all countable intersections of
open sets.

If X =R, the o-algebra B is generated by the set {Ja, 0o[la € R}. The
intervals [a. 00[, | — ec.al, Ja, b], and [a, b] belong to B since

1

20 J(l o 7—1,00[

a, 00 = 072,

o e
] - o, a] = [a, o<

}u,‘ [)[ :J — 00, [)[ﬂ]ﬂ'.. Oo[
[(L, 1/} = [(1., OO[——]b.,OO[.

Any topological space can be regarded as a measure space with the
Borel sets playing the role of the measurable sets. Let X and Y be two
topological spaces; a measurable mapping f: X -+ Y is said to be Borel
measurable. For iastance, any continueus mapping f: X' — Y is Borel
measurable, since, for any open set © of ¥, f71(Q) is a Borel set of X
(Theorcm 2).

In what follows we shall deal, almost exclusively, with mappings from
X mto R {or C), where X is any space. These particular muappings will be
called functions, and to prove that they are measurable, we shall make use
of the following criterion.

Criterion. Let f be a functien from X into R; f is measurable if, and
only if, for any real a. the set {2 f(x) > a} is measurable.

This result follows from Theorem 2 and from the fact that the o-
algebra of the Borel sets of R is generated by the set {ja, co[lo € R}.
Remark. Equivalent criteria-could have been established by counsidering
the sets {z|f(z) > a} , {z|f(2) < a}, or {z|f(x) < a}.
flr) = a} is a Borel set.

Frample 2. 1f [ is measurable, then the set {z

If @ is finite, this result follows fromn the fact that

{2|flr) =a} ={z{f(2) = a} N {z|f(x) < a}.
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If a = oc, the result follows from

{rif(r) =00} = (j {x|flr)>n,.

i
n=1

If « = —o0, the proof is similar.
Erxample 3. The charvacteristic function 1,4 of a set A is measurable if,

and only if, the sct A is measurable; since

R, ifa<;
{.l'!l.,\(.l'\ > ll.} = A, f0<ca<ly
0, ifa>1.

As a conscquence of Corollary 2, a function f of X in C is measurable
if, and only if. Rf and 3 f are measurable.

Theorem 3. Let f and g be two measurable functions from X into R
(or C).

(1) For any positive mumnber «, | f|® is measurable.

(2) If there is no « € X such that f(z) = 0. 1/f is measurable.

(3) f+ ¢ and fg are measurable.

(1) 1f] is the composed mapping of f and z — [z[*. This last map-
ping is continuous and, therefore, Borel measurable. The result is then a
consequence of Corollary 1.

(2) The proof is similar to the preceding one, since the mapping z —
1/z from R—{0} (or from C—{0}) into R is continuous.

(3) f+g¢ (resp. fg) is the composed mapping of = +— (f(z), g(«)) from
X into R? (or C%), which is measurable (Corollary 2), and of (zy,z7) —
21 + 22 (resp. z;zy), which 1s Borel measurable (because continnous). The
result 1s then a consequence of Corollary 1.

Ezample 4. Let f be a function whose range is {ay,az. ..., ay}, where «;

(1 =1.2,.... n) are n distincet finite real numbers. If 4; = {z|f(2) = a,},
then
n
f= Z a;1a4;.
=1
If the sets A; (1 == 1,2.....n) are measurable, the characteristic functions
14, (2 = 1,2,...,n) are measurable (sce Example 2), and Theorem 3(3)

shows that f is measurable. Finite linear combinations of characteristic
functions of measurable sets will play a very important role in the con-

struction of Lebesgue's theory (see Definition 4 and Theorem 5).



