


CALCULUS U Analytic Geometry U Vectors

John F. Randolph

The University of Rochester

DICKENSON PUBLISHING COMPANY, INC.

Bel,,._.-J ~ _1°r



© 1967 by Dickenson Publishing Company, Inc., Belmont, California. All rights
reserved. No part of this book may be reproduced in any form, by mimeograph or
any other means, without permission in writing from the publisher.

L. C. Cat. Card No.: 67-11860

Printed in the United States of America



CALCULUS U Analytic Geometry U Vectors



Preface

The physical sciences have deep roots in mathematics, and mathematics
is now permeating such traditionally qualitative subjects as business, economics,
linguistics, medicine, and psychology. These applications, moreover, increas-
ingly depend upon basic principles rather than handbook recipes. Even so, an
early display of rigor may be viewed as exalting the beauty of mathematics
over its utility. Until the need for the epsilon-delta method is felt, there is
danger of stifling interest by force-feeding this powerful technique too soon.
This book, therefore, begins on a descriptive level and proceeds in a gradually
tightening atmosphere of rigor consistent with the student’s development.
After an intuitive discussion, for example, limits are defined, but how a delta
depends on an epsilon is subtly worked in later. Limit theorems are stated in
Chapter 2 and the simplest proofs given, but the other proofs are more likely
to be honored in their setting of Chapter ‘13, after repeated evidence that
intuition cannot always be relied upon even in applications.

Geometric vectors are natural models for directed quantities, and a novice
forced to jump this visual aid may be lost in a morass of ordered triples, dots,
and crosses. With the background of vectors in this book, however, later
progress should be eased when the student sees that the founders of linear spaces
transcribed the same pictures into symbols. The vector notion is also the catalyst
unifying rectangular and polar coordinates, rotation of axes, parametric equa-
tions, curvilinear motion, and complex numbers. Isaac Newton (1642-1727)
leaned heavily on vector concepts in formulating his ideas leading to organized
calculus. The present interest in artificial satellites, incidentally, makes the
spark of Newton’s genius shine brighter than ever, as shown in the section on
space travel. Even though vectors appear in the first chapter and repeatedly
thereafter, they are considered to be tools, as are algebra and set notation.
In particular, currently fashionable Boolean algebra is not included since the
needs of calculus and analytic geometry are satisfied, and greatly aided, by a
bare minimum of unions and intersections.

There is ample evidence that upper and lower Darboux sums squeeze in
too much, and the step-function ladder reaches too high, for initial exposure
of most students to definite integrals. Also, an attenuated version of measure
theoretic methods using Jordan content fosters a delusion, hard to counteract,
that definite integrals are primarily for finding areas. The definite integral is
defined in this book as the limit, when it exists, of finite sums, its role in defining
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vi Preface

continuous quantities as extensions of discrete ones is featured, and it is used
early and frequently. The more sophisticated methods are excellent for a later
course, but prior to a sharp awareness of the potency of definite integrals, a
detailed development would consume time and energy out of proportion
with the benefits.

So many persons have contributed to this book that T dare not name any
for fear of missing some. 1 have, however, personally thanked all T can remember.

John F. Randolph
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Vectors
Chapter 1

1-1. Geometric Vectors and Vector Algebra

Vector analysis originated in the desire of nineteenth-century physicists
and mathematicians to deal with such quantities as forces and velocities whose
properties are not specified in terms of numbers
alone. Directed line segments furnished a natural
geometrical model for such quantities. Both the
directions and magnitudes of forces F, and F,
applied at a point of a body were modeled by
directed line segments OP and @ with the same
initial point O. The single force F producing the
same effect on the body is represented by the Fig. 1-1.1

directed diagonal ORof a parallelogram as in Fig.
1-1.1. Thus, the (geometric) parallelogram law for adding vectors emerged to
give
OP + 0Q = OR.

Physical concepts may then be interpreted in
terms of geometrical properties.

The physical counterpart of the geometri-
cal operation of moving @ to PR would
apply the force F, at a different point of the
body and produce a different effect on the

body. The same directed line segment OR is

obtained, however, by the triangle law illus-

trated in Fig. 1-1.2. The algebraic expression
OP + PR = OR

of the triangle law then furnishes a “cancellation” technique not evident

0 K, P

Fig. 1-1.2

in OP + OQ = OR. Hence, the concept arose of a vector being free to
move parallel to its original position. Although @ is geometrically distinct
from PR, the substitution of PR for OQ in

1



2 Vectors Chap. 1

OP + 00 = OP + PR=OR
has a meaningful interpretation, and thus algebraically PR = @

The concepts of bound and free vectors then developed. A bound vector
v having O as its initial point is merely a directed line segment OP. A bound
vector is completely determined by specifying its initial and terminal points.
The length (in terms of some preassigned unit) of the line segment joining O
and P is called the norm of » and is denoted by |5| = lm’\l. A vector v having
|v| = 1 is called a unit vector.

In contrast, a free vector » was conceived as a whole collection of directed
line segments, any one of which is a parallel translation of any other. Thus, if
PR and 0@ are specific bound vectors of a free vector », then PR and @ have
the same norm and the same direction but different initial points. Even though
PR and O_Q are geometrically distinct, either may be substituted for the other
in the algebra associated with free vectors, as developed below. Hence, the free
vector v is represented by either PR or @ It is customary to set

»=PRor v =00
and to interpret these as specifying the norm and direction common to all those
directeq line segments (Fig. 1-1.3) constituting the free

vector v.
The word “vector” without an adjective will gene-

/Q
o //" . rally mean “free vector.” Whenever a specific bound
e

vector is used to represent a free vectgr, this will bf
indicated by context. Thus, the norm |v| of a vector v
is the norm of any (and all) of the representatives
Fig. 1-1.3 of v.
Given two vectors # and v, take any representative OP of u and represent
v by P_Q Then O—Q represents a vector cal!_ed the sum _gor resultant) of u and v
and denoted by u + ». But » could have been repre-
Q, sented first by (7ﬁ, and then P, used as the initial
u Q point of a representative ITQ‘, of u to obtain v + u
represented by @:. By similar triangles, Q, and
Q are at the same point, so that
y g ) Uu+v="0+u
0o “ With w a third vector, Fig; 1-1.5a gives OR as
a representative of (v 4+ v) + w. The superposition
of Fig. 1-1.5b upon Fig. 1-1.5a shows that OR also
represents u+ (v + w), so that

() u+v)+w=u+@+w).

sy

Fig. 1-1.4



Sec. 1-1 Geometric Vectors and Vector Algebra 3
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Sy

Fig. 1-1.5
Hence, in forming the sum of three vectors it is not necessary to associate two
of them before adding the third, and thus the sum may be written
u+v+w
By reversing the direction of each representative of a vector », an associated

vector denoted by — v is obtained. The actual distance between the endpoints
of any representative of — v is the same as for », so that

|—o| =1o|.
Then, with ua vector, the subtraction of » from u is defined by
?3) u—7v=u+(—0)
Hence, if the representations u=0P and v = (TQ are used, the directed

segment Q_ﬁ represents u — v, as shown in Fig. 1-1.6. Algebraically, — = Q_O\
and

u + (—v) = OP + QO = QO + OP = QP.

Fig. 1-1.6 Fig. 1-1.7

If each representative of a vector v is doubled in length, without change of
direction, the result is a vector denoted by 2v. Thus,

2u +2v =2(u + v)



4 Vectors Chap. 1

follows, since the lengths of corresponding sides of two similar triangles are
in the same ratio (Fig. 1-1.7).

Whenever numbers and vectors are used together, the numbers are referred
to as scalars. Thus, each scalar a has an absolute value denoted by |a|, where,
by definition,

aifa>0
la| = .
—a if a <O.

For example, | —2| = |2| = 2 and |x| = 0 if and only if x = 0.

With a a nonzero scalar and v a vector, then a vector denoted by av is
obtained by:

(a) multiplying the length of each representative of v by |a| and then

(b) reversmg the direction if and only if a is negative. In particular,

—» = (—1v and —(2v) = (—2)v = 2(—0).

It is now convenient to extend the vector notion to include the so-called
null (or zero) vector 0 as having zero norm but with no direction assigned.
The null vector is not represented geometrically, but is used algebraically with
any vector v as:

(4) »+0=1,
(5) » — v =0, and
(6) av = 0 if either a =0 or » = 0.
The following laws then hold even if null vectors or zero scalars appear:
™ av + by = (a + b)v,
(8) au + av = a(u + v),
©) if av = by and » # 0, then a = b, and
(10) if au = av and a # 0, then u = v.

1-2. Basic Unit Vectors

Let O be a given point. A standard notation is iand ; for two vectors per-
pendicular to one another, each one unit long and each with initial end at O.
The vectors are called basic unit vectors of the plane in which they lie. It is usual
to have 7 horizontal pointing right and j vertical pointing up (toward the top
of the page).

Given a vector v in the plane of i and 7and also with initial end at O,
there are scalars x and y such that

N v =xi+¥j.
To see this, let OP, be the vector projection of v on the line containing 7. Then
OP, is a multiple of 7; that is, there is a scalar x such that OP, = xi. This



Sec. 1-2 Basic Unit Vectors 5

scalar x may be positive, negative, or zero. In the same way, a vector T& = y}:
is determined by projecting v onto the line containing j. Then

v = OP, + OP, = xi + yj.

&) «, ___|p
- | T ™
] I | 7
A e : : v
i | o\ |7
7 s Pyl 7
a b.
Fig. 1-2.1

The terminal end of v such that (1) holds is labeled (x, y). Hence, a one-to-
one correspondence is established between vectors » with initial ends at O and
ordered pairs (x, y) of scalars. It is then unambiguous to speak of “the vector
(x,y)” instead of “the vector xi + y}: with initial end at 0.” For example,
(2, —1) + (1,5) = (3, 4) is another way of indicating the vector addition

Qi —-N+E+5D=C+ i+ (-1 +5)7—3?+47
As defined earlier, the actual length of a vector v denoted by |v| is called

the norm (or absolute value) of v. With v = x7 + y ], then, by the Pythagorean
theorem,

) o] = ~/XF ¥2.

Hence, if v = 0, then |5| # 0, or, equivalently, if[};l — 0, then » = 0.

With basic unit vectors i and j selected, then a label (x, y) for each point
of the plane is determined. It is then said that a plane coordinate system has
been established. “The point labeled (x, y)” is shortened to “the point (x, y).”
Also, x is called the abscissa and y the ordinate of the point. The whole line
containing 7 is called the axis of abscissas (or x-axis), while the half of this line
with endpoint O and containing iis called the positive x-axis, with the other
half called the negative x-axis. Similar definitions are given for the axis of
ordinates. The point O is called the origin.

Saying “the vector (x, y)” or “the point (x, y)” establishes the context as
primarily concerned with vectors or coordinates, respectively. The interplay
between vectors and coordinate geometry is an aid to both.

With points (x,, y,) and (x,, y,) given, the vectors

vy =X +yj and v, = x,i + y,j,

with initial ends at the origin, terminate at the points (x,, y,) and (x,, y,). The
vector difference
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(xZ, yz)

~
(xz'xl,yz'yl) \\&;
A Y S

/

b

;)
/'\Q’/

S
AN 7 (1, ¥1)

Fig. 1-2.2

;2 == ;1 = (xz? + J"z—j) = (xl_i‘ + )hj) = (x; — xl)? + (y: — yl)}
may be pictured as the vector from the point (x,, y,) to the point (x,, y,) or else

as the vector from the origin to the point (x, — x,, ¥, — »,). Hence, by (2), the
norm of this vector,

|vg — 0] = A/ (%2 — X1) + (2 — W1)%
may be visualized as the distance between the points (x,, y,) and (x,, y,).
The vector from the origin to the point two-fifths of the way from the
point (xy, 1) to (x,, y,) is
; == _131 +"§(52 - ?_;1) — %?)1 +*§;2
=7 + yi)) + #xd + 32))

3+ 2x,2 ) 3y + 2y,
= 5 i+ 5w

The terminal end of this vector is therefore the point

(3x1 + 2X2, 3y, + 2)’2)_
5 5

By a similar method, show: The line segment joining the points (x,, y,) and
(X3, ¥5) has midpoint

Problem 1. Show that each of the vectors has unit norm:

NI 1 | PR . 122
a it o) & —Fz! vzl @l Tt
/3= 1 - 3 4 - > >
b. 3 ? —7j' d. —'?'l —?j f. 0.8/ -—0.6].

Problem 2. Draw the vector and find its norm:
a. 37 +4j. c. 37 —3j. e. =/ 217 +0;].
b. 57 — 127 d 7 +7J. f. 07 —5j.



