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Preface to the Corrected Second Printing

Since our monograph was published first in 1993, quantum information theory
has developped a lot in connection with the revolutionary achievements in
the fields of quantum computing and quantum algorithms. Von Neumann
entropy and quantum relative entropy have got several new applications and
interpretations and many examples of quantum communication channels have
been discovered and discussed.

The second edition keeps the original structure of the first one. At the
end of the chapters a short summary is given about some of the new results
obtained after the first addition was published. The results covered by the
summary sections are selected in a rather arbitrary way and they cannot give
an abstract of the huge number of papers published in quantum information
theory in the recent years. The bibliography of the book is slightly extended
as well. The new items are indicated by a star.

The second edition has benefitted from comments from a number of peo-
ple and the authors are grateful to many’ colleagues who helped to correct
misprints. The index of the book has been made more comprehensive to help
those readers who wants to find some specific subjects.

Masanori Ohya
Dénes Petz



Preface to the First Edition

Entropy is a concept which appears in several fields and it is in the center
of interest both in mathematical and physical subjects, sometimes even at
other places, for example in communication engineering. The birthplace of
quantum entropy was in quantum statistical mechanics. Quantum entropy is
not a single concept but rather a family of notions which started with the
von Neumann entropy of a density matrix and has developed in a number
of directions. The heritage of quantum entropies from quantum mechanics is
their strong relation to Hilbert space.

This book begins with the entropy of a state and through the entropy of
coarse graining it proceeds to the quantum dynamical entropy. A bunch of
topics shows the direct physical relevance of the entropy methods. The math-
ematical formalism is based on operator theory and mostly the language of
operator algebras is used. The use of the concepts and methods of functional
analysis not only makes the theory of quantum entropy more uniform and lu-
cid, but it essentially simplifies and extends it. A comprehensive presentation
without these elements would not be possible.

Chapters 1-3 are elementary and require of the reader only a basic knowl-
edge of linear algebra and function theory. ( Some series expansions may be
beyond this level but they are standard in mathematical physics and and
exact source indication provides assistance in the few cases they show up.)
Most of the results of Chapters 1 and 3 are repeated in Part 2 in a more
general setting. Part 1 of the book intends to demonstrate that although the
quantum entropy is a more technical subject than the classical one, the basic
concepts and properties are accessible without heavy mathematics.

The theory of operator algebras becomes more necessary in Parts 2-4.
The very essentials are contained in any standard book on operator algebras
but we suggest “Operator Algebras and Quantum Statistical Mechanics 17
by Olla Bratteli and Derek W. Robinson if a reader really would like to see
a systematic treatment of this subject. What is badly needed for quantum
entropy theory is concisely summarized in Chapter 4. It might be informative
to emphasize that the bulk of entropy results are fully understandable without
a deep knowledge of functional analysis but the proofs at a general level
require sometimes sophisticated tools.



VIII Preface to the First Edition

Part 5 is a collection of independent subjects which provide wide space for
application of the abstract theory. In our opinion one can get a real insight
into these topics without a thorough reading of all the previous chapters but
with the understanding of Part 1. Precise references help those readers who
have not gone through the preceding chapters.

Almost all the results in this book are accompanied with detailed rigorous
proofs. Our attitude is contained in the following motto.

“Even things that are true can be proved.”
(O. Wilde)

The end of a proof is indicated by the symbol [J. Each chapter is closed by
a section “Notes and Remarks”. Here one can find the main sources used
by the authors in the presentation and references to related results if the
authors were aware of those. The literature on quantum entropy is huge and
on entropy it is even more tremendous. Our selection must be very subjective
and it mostly indicates our sources rather than evaluation of the literature.
To find the balance between classical entropy and quantum entropy theory
was a delicate point for the authors. Typically the classical theory is neither
assumed nor explained in detail in the book. Of course, any slight knowledge
of probabilistic entropy concepts is very helpful for the reader and yields a
deeper understanding.

We want to thank many colleagues for their kind help in the preparation
of the manuscript. We cannot name all of them but we ought to mention Luigi
Accardi, Imre Csiszdr, Andras Dévényi, Matthew J. Donald, Mark Fannes,
Fumio Hiai, Heide Narnhofer, Walter Thirring and André Verbeure.

Masanori Ohya
Dénes Petz
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Introduction

The task of statistical mechanics is to derive macroscopic or bulk properties
of matter from the laws governing a huge number of individual particles.
( The word particle is used here for the sake of simplicity, one can think of
molecules in a gas, electrons in a plasma, etc. ) Entropy relates macroscopic
and microscopic aspects and the concept is as old as modern thermodynam-
ics. The name “entropy” is due to Clausius and the main steps towards the
concept were taken by Boltzmann and Gibbs. Any study leading to the un-
derstanding of entropy must go through probability theory. The Boltzmann-
Gibbs-Shannon entropy of a finite probability distribution (p;,pa,...,px) is
the quantity

k
H(p1,p2,---, pr) = — Z pilogpi, (1)
i=1
which is strongly related to the asymptotics of certain probabilities. This is
the very reason why the same quantity appears in different subjects, statis-
tical mechanics, information theory, ergodic theory, for example.
N!
' ! 1 N) (2)
PN (paN) ... (prN)!

is the number of ways one can put N objects (say, particles) into k boxes
(say. cells of the phase space) so that the different boxes contain objects with
proportions py, pa,...,pk. Suppose we are interested in the behavior of Wy
for large N. Using Stirling bounds for the factorials one can see that

WN(p]vaa" '7pk) = (

|+ 108 Wx(pr,p2. - pk) = H(pr,p2. - -.px)| = O(n~"logn) (3)

Boltzmann interpreted the number log W (p1, pa, - .., px) as the “thermody-
namical probability” of the macro-state (p1,ps,...px). He had to divide the
phase space into cells in order to speak of the number of “micro-states”. In
quantum mechanics such discretization is not necessary because contained in
the theory.

Before we turn to entropy in quantum systems we summarize the abstract
logical foundations of quantum theory. The primary mathematical structure
associated with the set P of all propositions on a physical system is an ordered
structure. (In place of proposition “question”, “event” and “yes-no experi-
ment” are used in the literature.) On the set P a reflexive antisymmetric
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transitive relation (that is, an order relation ) is given, which is customarily
denoted by <. The relation p < ¢ is interpreted as stating that ¢ is true
whenever p is proven to be true. Any (finite) collection (p;); of elements of
P admits a greatest lower bound A;p; and a least upper bound V,;p;. We write
pAq and pV q if we have to do with two elements. P is called a lattice in the
language of algebra and it has a least element and a greatest element, which
are denoted by O and I respectively. Another algebraic operation on P is the
orthocomplementation. This is a mapping p — p* of P onto itself such that

(i) pt=p
(i) p < q implies p*~ > ¢*,
(iii) pApt=0andpVvpt =1.

Two elements p and q of P are said to be disjoint or orthogonal if p < ¢* (or
equivalently ¢ < p*). Without deeply entering quantum logics we recall that
the logical differences between quantum and classical behavior concerns the
distributivity of the lattice P.

In this book we always suppose that P is the set of all orthoprojections
(i.e., idempotent self-adjoint elements: p = p? = p*) of a *-algebra A. In
usual quantum mechanics A is the set of all bounded operators on a Hilbert
space. On the set of projections of A the ordering is defined by

P<q &< pg=p
and orthocomplementation is defined by
pr=I-p

where I is the unit element of A. (I is the largest projection. ) The lattice op-
erations are not directly expressed by product and sum. In the Hilbert space
formulation of quantum mechanics P is the set of all orthogonal projections
of a Hilbert space H. Let p,q € P be projections onto the closed subspaces
H1 and Ha, respectively. Then the join pVq is the orthogonal projection onto
the closed subspace generated by H; and Hs and the meet p A g projects onto
the intersection of H; and Hs.

Given an orthocomplemented partially ordered set P we say that a real-
valued function g on P is a probability measure on P if

(i) 0<u(p)<lforallpeP, u0)=0and u(l)=1,
(ii) for every sequence (p;) of pairwise orthogonal elements in P the addi-
tivity >_; u(pi) = p(Vip;) holds.

The additivity property (ii) may be called finite or countable additivity de-
pending on the sequence required. When P is the set of projections of a
*_algebra and ¢ is a linear functional on A such that 0 < ¢(p) < 1 for every
projection and ¢(I) = 1, then ¢ restricted to P gives rise to a finitely additive
measure on P. This is a consequence of the simple fact that for disjoint pro-
jections p and ¢ the equality pV ¢ = p+ ¢ holds. In order to obtain a measure
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on P by the restriction of a linear functional ¢ we need to pose some further
conditions on ¢. A linear functional ¢ will be called a state if ¢(/) = 1 and
p(x*x) > 0 for every z € A. The states of a *-algebra supply an important
class of measures on the set of projections of the algebra but certainly not
all the measures may be obtained in this way. A pair (A, ) consisting of
a *-algebra A and of a state ¢ will be called a probability algebra. Given a
probability space (X, F, ) the set of all complex-valued bounded measurable
functions form a *-algebra with pointwise conjugation as involution, on which
integration with respect to p provides a state. On the basis of this example,
we are tempted to borrow terminology from classical probability theory when
dealing with probability algebras.

In Hilbert space quantum mechanics states are given by statistical opera-
tors. A positive operator D € B(#H) is called a statistical operator or density
if its spectrum consists only of eigenvalues and the sum of eigenvalues is
1. When the physical system is in a state described by the density D, the
expected value of the bounded (self-adjoint) observable A € B(H) is

Trace DA = Z Xl fil Alfi) (4)

if D =73, X\|fi){(fi|] in an orthonormal basis |f;). In physics the underlying
Hilbert space is often infinite dimensional and so is the *-algebra B(H).
However, because of their for their technical simplicity it is useful to consider
finite dimensional *-algebras which readily admit an abstract trace functional.
An abstract trace functional is a linear functional Tr taking the value 1 on
each minimal projection (that is, on the atoms of the corresponding logic). So
Tr I measures the size of the algebra; it is the number of pairwise orthogonal
minimal projections the sum of which is the unity /. By means of Tr the
states are described by density matrices in the form

¢(a) = Tr Dya (ace A).

Here the density matrix Dy, is positive (semidefinite) and Tr D, = 1 comes
from the normalization ¢(I) = 1. In this formalism for the case of the com-
mutative algebra A = C™ we have

n
Tr(ci,coy... cn) = Zci.
i=1
In this case the density “matrix” or “statistical operator” becomes a prob-
ability distribution on the n-point-space. It is certainly an advantage of the
*_algebraic approach to the foundations of quantum theory that it includes
traditional probability theory and on the other hand the “matrix mechanics”
of quantum systems is covered by the same formalism.
The set of all states, the state space, is a convex set. In the example
A = C" the state space is nothing else but the standard n-simplex

Sn = {(Clsc%- : -acn) €R™ : c; > 0: Zzlzlci = 1} .
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The extreme points of the state space are called pure states. ( Pure states
can not be mixtures of other states.) The simplex S,, has n extreme points
and every element is uniquely represented by their convex combination. ( A
convex set is called “Choquet simplex” if all points are unique mixtures of
the extremal boundary. ) The state space of a typical quantum system is far
from being a simplex. Consider the algebra A of a single particle of spin 1/2
which is simply A = M5(C), the algebra of 2 x 2 complex matrices. The state
space with an appropriate parameterization may be identified with the three
dimensional unit ball. The pure states correspond to surface points and all
the inner points are mixtures of pure states in many ways.

Turning to thermodynamical entropy we repeat a gedanken experiment
of John von Neumann. Let us have a gas of N(>> 1) molecules in a rectan-
gular box K. Suppose that the gas behaves as a quantum system and it is
described by a probability algebra (A, ¢) in a certain physical state. If ¢ is a
mixture Apj + (1 — A)p2, then we may think that AN molecules are in state
1 and (1 — A\)N ones are in the state ps. On the ground of phenomenolog-
ical thermodymanics we assume that if ¢; and @9 are disjoint, then there
is a wall which is completely permeable for the ¢j-molecules and isolating
for the po-molecules. (If the states ¢ and @y are disjoint, then this should
be demonstrated by a certain filter. Mathematically the disjointness of ¢
and py is expressed in the orthogonality of the eigenvectors corresponding
to nonzero eigenvalues of the density matrices of the states ¢; and 5. )
We add an equally large empty rectangular box K’ to the left of the box K
and we replace the common wall with two new walls. Wall (a), the one to
the left is impenetrable, whereas the one to the right, wall (b), lets through
the ¢j-molecules but keeps back the ps-molecules. We add a third wall (c)
opposite to (b) which is semi-permeable, transparent for the @s-molecules
and impenetrable for the pi-ones. Then we push slowly (a) and (c¢) to the
left, keeping their distance. During this process the p;-molecules are pressed
through (b) into K’ and the @o-molecules diffuse through wall (¢) and re-
main in KA. No work is done against the gas pressure, no heat is developed.
Replacing the walls (b) and (c¢) with a rigid absolutely impenetrable wall and
removing (a) we restore the boxes K and K’ and succeed in the separation
of the p;-molecules from the ps-ones without any work being done, without
any temperature change and without evolution of heat. The entropy of the
original p-gas (with density N/V ) must be the sum of the entropies of the
1- and @o-gases (with densities A N/V and (1 —\)N/V, respectively. ) If we
compress the gases in K and K’ to the volumes AV and (1 — )V, respec-
tively, keeping the temperature constant by means of a heat reservoir, the
entropy change amounts to kgAN log A and k(1 — A)N log(1 — \), respec-
tively. Finally, mixing the ¢;- and ¢q-gases of identical density we obtain a
@-gas of N molecules in a volume V' at the original temperature. If Sy(v), N)
denotes the entropy of a 1-gas of N molecules (in a volume V and at the
given temperature ), we conclude that
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S()(@l. )\N) + S()((,OQ, (1 — /\)N)
= So(p. N) + kAN log A + k(1 — A)N log(1 — X)

must hold, where kg is Boltzmann’s constant. Assuming that Sp(¢, N) is
proportional to N and dividing by N we have

AS(e1) + (1= A)S(p2)
= S(p) + kpAlog A + k(1 — A)log(1 — A), (5)

where S is certain thermodynamical entropy quantity (relative to the fixed
temperature and molecule density ). We arrived at the mixing property of
entropy but we should not forget about the starting assumption: ¢; and
g are supposed to be disjoint. In order to get the entropy of a ¢-gas with
statistical operator D, we need one more postulate: We shall assume that the
entropy of pure states vanishes. If D, = > . A;p; is the spectral decomposition
of the statistical operator (p;’s are pairwise orthogonal minimal projections),
then

S(p) = —kp »_ Ailog \; (6)

is easily inferred by repeated application of the mixing equation (5). In this
book Bolzmann’s constant kg will be taken 1. This choice makes the entropy
dimensionless (and correspondingly, the temperature should be measured
in erg instead of Kelvin). The above gedanken experiment is a heuristical
motivation for von Neumann’s entropy formula (6). During the deduction
we overlooked a problem arising from the ambiguity of the decomposition
© = Ap1 + (1 — A)pa. Nevertheless, a closer inspection shows that a different
decomposition ¢ = pp+(1—p)1p2 would not yield a contradicting conclusion.

The statistical operator is fundamental in quantum theory, but one should
be aware of the fact that not all states of any quantum system can be de-
scribed by a statistical operator. For example, type III von Neumann algebras
appearing typically in quantum field theory do not have pure normal states.
Notwithstanding this, the von Neumann entropy of a density matrix is right
way to understand quantum entropy. Entropy is not an observable like posi-
tion or angular momentum. There does not exist self-adjoint operator such
that its expectation value in a state would yield the entropy of this state. The
von Neumann entropy is a functional on the states of the quantum system
which can not be represented by an operator.

The von Neumann entropy of a state expresses the degree of “mixing”.
Pure states have vanishing entropy. Since the state space of a quantum system
is never a Choquet simplex, a state ¢ may have several extremal decomposi-
tions like

P = Aipi (xi=1, A =>0), (7)
where every ; is a pure state by definition. Then

AS'(&P) = ]llf{H(/\| )\f_)_, . ) LY = Z[»)\,‘kﬁ,‘}



