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Preface

Algebraic topology is the study of geometric objects via algebraic methods. Familiarity
with its main ideas and methods is quite useful for all undergraduate and graduate
students who specialize in any of the many branches of mathematics and physics that
have connections to topology, differential geometry, algebra, mathematical analysis, or
differential equations. In selecting the content of this book and in writing it the author
aspired to reach the following goals:

e to cover those ideas and results that form the backbone of algebraic topology
and are sufficient to provide a beautiful, intuitively clear, and logically complete
exposition;

e to make the book self-contained, while keeping it reasonably short;

e to make the exposition logically coherent, well-illustrated, and mathematically
rigorous, at the same time preserving all the advantages of an informal and lively
presentation;

e to structure the text and supplement it with exercises and solutions in such a way
that the book becomes a ready-to-use tool for both teachers and students of the
subject, as well as a convenient instrument for independent study.

A special attention was devoted to providing explicit algorithms for calculating the
homology groups and for manipulating fundamental groups. These subjects are often
missing from other books on algebraic topology.

The present book is a revised and slightly extended version of the Russian original
publication.
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1
Elements of homology theory

1.1 Categories and functors

One of the main parts of algebraic topology is homology theory, which is a functor
from the category of topological spaces to the category of sequences of Abelian groups.
Therefore we begin by introducing the notions of a category and a functor.

In order to define a category, we proceed as follows:
1. We specify a certain class of objects. Objects may be of any nature.

2. For every ordered pair A, B of objects we specify a set of morphisms [A, B] of
object A to object B.

3. For every ordered triple A, B, C of objects we indicate a rule assigning to each
pair of morphisms f € [A, B], g € [B, C] a third morphism, which belongs
to [A, C], is called a composition of morphisms f, g, and is denoted by gf. In
other words, we define a composition map [A, B] x [B, C] — [A, C].

Definition. The class of objects, the sets of morphisms, and the composition maps thus
specified form a category if the following axioms hold:

I. Composition of morphisms must be associative, i.e. for all triples of morphisms
f€lA,B]l,g €[B,C],h € [C, D] we must have an equality (hg) f = h(gf).

II. For any object B there must be a morphism Idg € [B, B] such that for any two
morphisms f € [A, B], g € [B, C] the following equalities hold: Idg f = f
and gldp = g.

Such situations (classes of objects related by morphisms satisfying axioms I, II;
i.e. categories) arise naturally in many different areas of mathematics. Already at this
general level it is possible to give definitions and prove meaningful theorems, which, by
virtue of their generality, enjoy a remarkably wide applicability. We restrict ourselves
to a very brief introduction into category theory. A more detailed exposition can be
found, for instance, in [2].

Examples of categories

1. The category of all sets and their maps. The objects of this category are all sets,
the morphisms are all possible maps between them.
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2. The category of groups and homomorphisms. The objects are groups, and the
morphisms are their homomorphisms.

3. The category of Abelian groups and their homomorphisms. The objects of this
category are Abelian groups, the morphisms are homomorphisms between them.

It is easy to find other examples of a similar kind: the category of finitely generated
groups, the category of rings, and others.

4. The category of topological spaces and continuous maps. The objects are all
topological spaces, and the morphisms are their continuous maps.

In all of the above examples the objects are sets, perhaps with additional structures,
and the morphisms are maps of sets. However, there exist categories of other types.

5. The category of topological spaces and classes of homotopic maps. The objects
of this category are topological spaces, the morphisms are classes of homotopic
maps (see definition on page 15). Notice that in this category morphisms are not
maps themselves but rather classes of homotopic maps.

Although morphisms do not have to be actual maps, it is quite convenient to denote
them in the same way as maps: instead of f € [A, B], we write f: A — B.

Definition. Objects X, Y of a category G are called isomorphic if there exist morphisms
f: X —Yandg: Y - X suchthat fg =Idy and gf = Idx, where Idy, Idy are the
identity morphisms of objects X and Y. The morphisms f, g are called isomorphisms.

Example. Which sets are isomorphic in the category of all sets? It is easy to see that
those are exactly sets of equal cardinality, since an isomorphism in this category is
nothing other than a bijection.

Example. An isomorphism in the category of topological spaces is any homeomor-
phism; in the category of groups, a group isomorphism. An isomorphism in the cate-
gory of topological spaces and homotopic maps is called a homotopy equivalence. It is
also worthwhile to mention an isomorphism in the category of smooth manifolds and
smooth maps. That is a diffeomorphism.

The usefulness of the notion of a category can be seen already from these examples:
a single definition stated in terms of category theory, can replace many corresponding
definitions in specific categories. A similar factis true for theorems as well: if a theorem
is proven in categorical terms, then it automatically holds in all specific categories. This
observation yields a promising method of obtaining new results.

Let Gy, Gz be two categories. Suppose that to each object X of the former category
we assign an object of the latter category. Let us denote it by F(X). Assume also
that to each morphism f: X — Y of G; we assign a morphism f,: F(X) — F(Y)
of G2. Such an assignment is called a covariant functor from the category G to the
category Gy if the following axioms hold:
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1. If f is an identity morphism, then f is also an identity morphism.
2. If a composition fg is well defined, then (fg)x = fxgx-

A contravariant functor F from a category G to a category Gy differs from a covariant
one in that to each morphism f: X — Y of the category G| we assign a morphism
f*: F(Y) — F(X) of the category G, i.e. one that acts in the opposite direction. The
axioms are of course changed in the natural way. In particular, the equality (fg)+ =
f«8+ is replaced by the equality (fg)* = g* f*.

Exercise 1. Give examples of covariant and contravariant functors.

Theorem 1. Let F: G; — Gy be a functor from a category G to a category G.
Suppose that two objects X, Y of the category G are isomorphic. Then the objects
F(X), F(Y) of the category G are also isomorphic. Equivalently, if the objects F (X),
F(Y) of the category Gy are not isomorphic then neither are the objects X, Y.

Proof. We limit ourselves to considering a covariant functor. Let f: X — Y and
g: Y — X be someisomorphisms between X and Y suchthat fg = Idy and gf = Idy.
Then it follows immediately from the definition of a functor that f,g, = Idfr(y) and
g+ f« = IdF(x), which ensures that objects F'(X) and F(Y) are isomorphic as well. O

Theorem 1 is of fundamental importance. Here is a standard way of applying it:
suppose that we want to find out whether some given topological spaces X and Y are
distinct. Take a functor from the category of topological spaces to another category, for
instance, a category of groups, and compare the objects F(X) and F(Y). If they are
distinct, then X and Y are distinct as well. In case F(X) and F(Y) coincide, nothing
can be said about X and Y. This remark explains the significance of homology theory,
which is a functor from topology to algebra.

Exercise 2. Applying Theorem 1, show that the cyclic groups Z4 and Zs are not
isomorphic.

Thus, with the help of a functor F: G; — Gp, the problem of distinguishing
objects in the category G is replaced by a similar problem of distinguishing objects
in the category G». The meaning of the replacement is that in Gy this problem may be
easier. It should be noted that when we pass from the category G; to Gy, a part of the
information about the objects of G is usually lost.

A careful consideration of the above arguments shows that a “nice” functor should
possess the following properties:

1. It should be easily computable, i.e. the determination of the object F(X) for a
given space X should not pose difficulties of fundamental nature.

2. There should be a simple way of distinguishing objects F(X) and F(Y).

3. The transition from an object X to F(X) should not lose too much information.
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Homology functors from the category of topological spaces to the category of groups
meet these requirements to a significant extent. These aspects should be given special
attention when studying homology theory.

In fact, a homology functor assigns to a topological space not a single group but
rather a whole sequence of Abelian groups, i.e. itis a functor to the category of sequences
of Abelian groups. Calculating the homology groups of an arbitrary space may prove to
be unpredictably difficult, therefore, as a rule, they are studied for a class of spaces that
are not too complicated. We take the category of simplicial complexes as the domain
of our homology functor and only briefly mention more general homology theories.

1.2 Some geometric properties of RV

Recall that a basis in the Euclidean space R" is an ordered collection of N linearly
independent vectors.

Definition. Two bases of R are called equivalent if the determinant of any change of
coordinates matrix between them is positive.

Exercise 3. Prove that the relation thus introduced is an equivalence relation.

Being an equivalence relation, the above relation on the set of all bases decomposes
it into two classes of equivalent bases.

Example. How do we decide, without calculating the matrix, whether two bases of
the line (of the plane, or of the 3-space) are equivalent? We assume that the bases
are given by a picture. The answer is simple. Two bases of the line (i.e. two vectors)
are equivalent if they are co-directed. To each basis of the plane we can assign the
rotation from the first vector to the second one along the smaller angle. Two bases are
equivalent if either both of them are positive (i.e. are counterclockwise) or both are
negative (clockwise). Finally, all bases of the 3-space can be decomposed into the left
ones and the right ones, depending on whether the rotation from the first vector to the
second one in the direction of the smaller angle is positive or negative when looked
upon from the end of the third vector. Two bases are equivalent if they are of the same
type. To determine the type of a basis, one could use the physicists’ “screwdriver rule”.

Exercise 4. Figure 1 shows three right bases and a left one. Find the left one.

Definition. Orientation of the space R”" is a class of equivalent bases.

Orientation is usually given by specifying a basis representing the relevant equiva-
lence class.

Exercise 5. Prove that RV has precisely two distinct orientations.



1.2 Some geometric properties of RY 5

w

Figure 1. Right bases and a left one in RV.

It is also convenient to stipulate that the space R (the point) has two orientations,

“

the orientation “+” and the orientation .

Definition. A system ag, aj, ..., a, of n 4+ 1 points in R¥ is called independent if
these points are not contained in the same plane of dimension n — 1 (or less).

We would like to stress that any system of n points is contained in some plane of
dimension < n — 1.

Exercise 6. Prove that the independence of points ag, ai, ..., a, is equivalent to the
linear independence of the vectors agpay, apaz, . . -, apay.

Exercise 7. Prove that any subset of an independent system of points is also an inde-
pendent system of points.

Definition. The convex hull of #» + 1 independent points ag, ay, . .., a, in RV is called
an n-dimensional simplex. The points ag, ay, ..., a, are called the vertices of the
simplex.

It follows from the definition that simplices of dimension 0, 1, 2, and 3 are points,
segments, triangles, and tetrahedra, respectively.

The plane of the smallest dimension containing a given simplex is called the support
plane of that simplex. Its dimension coincides with that of the simplex. Orientation
of a simplex is an orientation of its support plane. It is given by the choice of a basis.
According to our agreement on the orientations of R, a 0-dimensional simplex, i.e. a
point, has two possible orientations, “+" and “—".

Definition. A face of a simplex is the convex hull of some subset of the set of its
vertices.

Exercise 8. Prove that a face of a simplex is itself a simplex.
Exercise 9. How many m-dimensional faces does an n-dimensional simplex have?

Exercise 10. What is the total number of faces of an n-dimensional simplex?
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Definition. The induced orientation of an (n — 1)-dimensional face of an oriented
n-dimensional simplex is defined in the following way: we choose a basis of the
n-dimensional simplex representing its orientation in such a way that the first n — 1
vectors are contained in the given face and the remaining one is directed inside the
simplex. Then the first n — 1 vectors determine an orientation of the face. This rule is
called “the rule of inward normal”. See Figure 2 on the left. The induced orientations
of the vertices of a one-dimensional simplex (a segment) are chosen such that the vector
that orients the segment is directed from the plus to the minus.

Figure 2. The induced orientation is defined by the rule of “inward normal”. The iteration of
this rule yields opposite orientations.

If « is the orientation of a simplex o and § is a face of it, then the induced orientation
of § is denoted as «|d.

Theorem 2 (On doubly-induced orientations). Let an (n — 2)-dimensional simplex y
be a common face of (n — 1)-dimensional faces 8, 8> of an n-dimensional simplex o
with orientation . Then the orientations («|81)|y and («|82)|y are opposite.

The proof of this theorem is obtained by a direct application of the definition of the
induced orientation. Therefore we omit it, restricting ourselves to the illustration in
Figure 2, right.

Definition. A finite collection of simplices in R" is called a simplicial complex if any
two of its simplices either have no common points or intersect along their common
face.

We can stipulate that simplices without common points intersect along their com-
mon empty face. Then the above definition can be reduced to requiring that any two
simplices intersect along their common face. We emphasize that, from the formal point
of view, it is necessary to distinguish the notion of a simplicial complex (a collection of
simplices) and of its underlying space (the union of these simplices). The underlying
topological space of K is denoted by |K|. It is always a polyhedron, i.e. it can be
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presented as the union of some convex polytopes in RY. In this situation we say that
the complex K triangulates the polyhedron |K | (or represents a triangulation of it).
The dimension of K is defined as the maximal dimension of its simplices.

Exercise 11. Give examples of simplicial complexes in the plane and in 3-space, as
well as an example of a collection of simplices that does not form a simplicial complex.

Definition. An orientation of a simplicial complex is a set of orientations of each of
its simplices including their faces.

Exercise 12. How many distinct orientations does the triangle, viewed as a simplicial
complex, have?

The construction of the homology groups of a simplicial complex is carried out in
two steps: first, to each simplicial complex we assign a certain so-called chain complex,
then to this chain complex we assign its homology groups. From the methodological
point of view it is more convenient to start with the second step.

1.3 Chain complexes

Definition. A sequence C of Abelian groups and their homomorphisms

9 On
= Cpp1 — Cp —> Cpeg —> -+,
infinite in both directions, is called a chain complex if for all n we have the equality
anan+l =0.

Let us stress that the equality 9,3,41 = 0 should be understood in the following
way: for any element x of the group C, | the element 8,,(8,,11 (x)) should be the trivial
element of C,,—;. We denote it by zero. since we employ the additive notation for the
chain groups.

Definition. The group C,, is called the n-dimensional chain group of the complex C.
The kernel Ker 9, C C,, of the homomorphism 8, is called the group of n-dimensional
cycles and is denoted by A,. The image Im 8,41 C C,, of 3,4 is called the group of
n-dimensional boundaries of C and is denoted by B,,.

Exercise 13. Give an example of a sequence of groups and their homomorphisms that
is not a chain complex.

Exercise 14. Find the groups of cycles and the groups of boundaries for all dimensions
of the complex
s 0 Z0Z- BT — 00— ...,

where the chain groups are given by the equalities C; = Z, C» = Z & Z, C, = 0 for
n # 1, 2, and the homomorphism 9, is defined by the rule 9, (m, n) = 3m + 3n.
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It is easy to show that for any chain complex the group of boundaries B, is contained
in the group of cycles A,. The inverse is also true; if B, C A, for all n, then the
given sequence of groups and their homomorphisms is a chain complex, i.e. 3,9,+1 is
always 0.

Definition. The quotient group A, /B, is called the n-dimensional homology group of
the chain complex C and is denoted by H, (C).

Exercise 15. Calculate the homology groups of the complex of Exercise 14.

Terminology. The elements of the group A,, are called cycles and those of B, are called
boundaries. The homomorphisms 9, are called boundary homomorphisms. Two cycles
ay,ay € A, are called homologous if their difference a; — a3 is a boundary, i.e. is an
element of B,. Thus, two cycles determine the same element of the homology group
if and only if they are homologous. The elements of each homology group can be
interpreted as classes of homology equivalent cycles.

Exercise 16. Calculate the homology groups of the elementary complex E (i) which

has the form
Om+1 O
L

and whose chain groups are the following:
0, n#m,
E,(m) = [ &
Z, n=m.

Exercise 17. Calculate the homology groups of the elementary complex D (m, k) which

has the form

Om+1

e —3 00— Z 5 f e o

and whose chain groups are given by the rule

0, n#Fmm+1,

D,(m, k) =
n( ) ’Z, n=m,m+1,

and the homomorphism 9,1 consists in multiplication by an integer k # 0.

Exercise 18. Give a definition of the direct sum of chain complexes and prove that
H,(C & C') = Hy(C) & Ha(C").

Definition. Let C and C’ be two chain complexes. A family of homomorphisms
¢ ={gn: C, > C,, —00 < n < oo} is called a chain map if ¢,0,+1 = Op+1@n+1 for
all n.
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The meaning of the condition @,d,+1 = n+1¢n+1 is that all the squares in the
diagram
an+l In
——>Cpy1 —>Cp ——>Cy—| ——
Pn+1 @n l‘PnAl
3, 9,
’ n+1 ’ n /
"—>Cn+l Cn'—>cn—l —

are commutative.

Exercise 19. Let ¢: C — C’ be a chain map. Prove that ¢, (A,) C A}, and ¢,(B,) C

B,’,, i.e. that ¢ takes cycles to cycles and boundaries to boundaries.

Theorem 3. Let ¢: C — C' be a chain map between chain complexes. Then for any
integer n assigning to each cycle x € C, the chain ¢,(x) € C,, induces a well-defined
homomorphism ¢, : H,(C) — H,(C").

Proof. This theorem is almost obvious. Its proof does not present any difficulties, es-
pecially if the reader has completed Exercise 19. Nevertheless let us describe explicitly
how a chain map ¢ between two chain complexes induces homomorphisms ¢, between
the homology groups of matching dimensions. Here we encounter for the first time
the so-called diagrammatic search (which is our preferred way to refer to the approach
that is also known as “general nonsense”). This method is just a collection of some
more or less standard tricks applied to diagrams. It is best to observe the method in
practice. Let us reproduce the above diagram having removed, for simplicity, all the
indices, see Figure 3. The elements used in the process of the proof are placed next to
the groups to which they belong.

. — i) Cn—1 —>
i¢
a d
'I'H-l — i - C_, —> ...

y \Jx' -x
Figure 3. A proof via the method of diagrammatic search.

Let h be an arbitrary element of H,(C). We would like to use the given chain
map ¢ to assign to i a well-defined element A’ = ¢, (h) of H,(C’). The first step
consists in choosing some cycle x € A, C C, representing h. Applying to x the
homomorphism ¢, we obtain a certain element x” = ¢(x) of the group Cj,.

Let us show that x’ is a cycle. Indeed, dx’ = d¢(x) = @(dx) = ¢(0) = 0 (we
have used the commutativity of the diagrams and the fact that x itself is a cycle). Now
we can define A’ as the class containing the cycle x’.
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Let us prove that the element 4’ of the group H,(C’) does not depend on x, i.e.
on the choice of an element representing h. Let x; be another representative, and let
x| = @(x)) be its image in C;,. Denote by h” the equivalence class containing x;.
Then the difference x — x; is a boundary. Therefore there exists an element y of C,, 1
such that dy = x — x|. Again using the commutativity, we obtain that x’ — x| =
o(x — x1) = @d(y) = d¢(y) = dy’, where y’ = ¢(y). It follows that x" and x| differ
by a boundary element, which means that the elements #’ and k" coincide. O

Exercise 20. Describe the category of all chain complexes and the category of se-
quences of Abelian groups. Check that assigning to each chain complex the sequence
of its homology groups, and assigning to each chain map ¢ between chain complexes
the induced map ¢, between their homology groups, yield together a functor from the
former of the above two categories to the latter.

1.4 Homology groups of a simplicial complex

Let K be an oriented simplicial complex. We assign to it a chain complex C(K)
as follows. The elements of the n-dimensional chain group C,(K) are formal linear
combinations of the form mioy + maoy + --- + mygox, where m; are integers and
Ol ..., oy are all the n-dimensional simplices. The addition is coordinate-wise. Of
course, the set C,,(K) is a group with respect to this operation.

From the algebraic point of view, C,(K) is the free Abelian group that is freely
generated, in an obvious sense, by the set of all the n-dimensional simplices. In
particular, its rank is equal to the number of these simplices. Furthermore, suppose
that there are no n-dimensional simplices in K. This may happen if n is negative or
greater than the dimension of K. Then there are no linear combinations either. In this
case we set C,(K) = 0.

To define homomorphisms 4, : C,(K) — C,—1(K) it is sufficient to define the
images of the generators, i.e. of all the simplices. Let o be an n-dimensional simplex
of K. Then each of its (n — 1)-dimensional faces has two orientations, its own orien-
tation that is a part of the total orientation of K and the orientation induced on it as a
face of 0. We set by definition

Op(o) = Z €idi,

siekK
where the summation is over all the simplices §; of dimension n — 1 and the numbers &;
(called the incidence coefficients) are given by the following rule:
0, if §; is not a face of o;
g =11, if §; is a face of o and the two orientations coincide;
—1, if §; is a face of o and the two orientations are distinct.
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The geometric meaning of this rule is quite simple. Recall that o denotes not just
an oriented simplex but also the chain 1 - o (an element of C,(K)). Let us postulate
that the chain —o = (—1) - o corresponds to the same simplex o, but taken with the
opposite orientation. Then d, (o) is nothing more than the boundary of o, where all the
(n — 1)-dimensional simplices contained in it are taken with their induced orientations.

Theorem 4. For any simplicial complex K the groups C, (K ) and the homomorphisms
Op: Cp(K) = Cu—1(K) form a chain complex (which we denote by C(K)).

The proof of this theorem follows from Theorem 2 on doubly-induced orientations,
which we now can rephrase as follows: the boundary of a boundary is empty. The
fundamental importance of this fact, which lies in the foundation of any homology
theory, merits a careful and deep consideration.

Definition. Let K be an oriented simplicial complex. Then the homology groups of
the corresponding chain complex C(K) are called the homology groups of K and are
denoted by H,(K).

In other words, the group H,,(K) is the quotient group Ker d,, / Im 9,4 of the kernel
of the homomorphism 9, by the image of the homomorphism 9, 1.

Exercise 21. Prove that the groups H,,(K) do not depend on the choice of an orientation
of K.

One can also prove that the homology groups of any polyhedron (a subset of RY
which can be presented as a simplicial complex) do not depend on any particular
choice of such presentation, i.e. on the triangulation. The proof of this result is rather
cumbersome, although it does not present serious difficulties of theoretical nature. For
instance, one may proceed as follows:

1. Make sure that the above construction of the homology groups can be carried
over to polyhedra decomposed not necessarily into simplices but into arbitrary
polytopes.

2. Prove that if some decomposition of a triangulated polyhedron K into polytopes
has the property that each simplex consists of whole polytopes, then the homol-
ogy groups calculated via the triangulation are isomorphic to those calculated
via the decomposition into polytopes. It is easiest to describe the desired isomor-
phism using the generators of the chain groups of the triangulation, i.e. simplices.
To each n-dimensional simplex o of the triangulation we assign the chain that
consists of all the polytopes comprising o. The coefficients at those polytopes are
equal to +1, depending on whether the orientation of a given polytope coincides
with that of o or is opposite to it. Therefore the boundary of this chain coincides
with the boundary of the simplex, which essentially ensures the isomorphism of
the homology groups, see also Figure 4.
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A=a—-b—c+d+e+f—g+h

Figure 4. An oriented simplex is assigned the chain composed of the polytopes comprising it.

3. For any two given triangulations of the same polyhedron we may consider the
decomposition into the polytopes given by intersections of any two simplices
belonging to the two triangulations. Then the previous item ensures the desired
isomorphism of the homology groups.

It is important to mention that it is possible to define the homology groups not only
for polyhedra but also for more general spaces homeomorphic to polyhedra. Sometimes
such spaces are called fopological polyhedra. Topological polyhedra can by definition
be triangulated, but into curvilinear simplices (images of genuine simplices under the
relevant homeomorphism).

Thus, in order to calculate the homology groups of a given topological space, one
should perform the following steps:

1. Present the space as a polyhedron and triangulate it.

2. Choose an orientation for the simplicial complex thus obtained.
3. Calculate the chain groups C,,.

4. Describe the boundary homomorphisms d,,.

5. Calculate the groups of cycles A,,.

6. Calculate the groups of boundaries B,,.

7. Calculate the quotient groups H, = A, /B,.

Theorem 5. The homology groups of the point are the following:

Hyy = |2 70
Z, n=0.



