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Flow chemistry — the use of small flow reactors to perform chemical synthesis — has
matured over the past two decades from early demonstrations of simple chemical
transformations in microstructured reactors (microreactors) to complex, multistep
synthesis relevant to fine chemistry and pharmaceuticals in commercial systems. This
evolution in synthetic methods and equipment has been motivated by advantages
inherent to continuous synthesis in small scale, specifically enhanced rates from
improved heat and mass transfer along with an expanded space of reactions and pro-
cess conditions. Continuous operation also eliminates headspace issues and avoids
accumulation of reactive or toxic intermediates offering opportunities for telescoping
of reactions. Synthesis applications are further enhanced by automated optimization
as well as mechanistic and kinetic information gained from integrating reaction com-
ponents with sensors, actuators, and automated fluid handling. Moreover, the steady
state operation inherent in continuous operation provides robustness, stability, and
scalability. -

The expansion in flow chemistry applications and equipment has been detailed in
numerous review papers and monographs, but there has been a longstanding need for
a comprehensive coverage of the many concepts underlying flow chemistry for grad-
uate students in chemistry and chemical engineering. The present Graduate Textbook
on Flow Chemistry fills the gap in graduate education by covering chemistry and re-
action principles along with current practice, including examples of relevant com-
mercial reaction, separation, automation, and analytical equipment. It motivates the
reasons for flow chemistry and importantly when flow chemistry will and will not be
advantageous compared to batch processing. Basic theory and practical considera-
tions are summarized to enable the reader to appreciate the difference between con-
ventional batch chemistry and flow chemistry as well as to implement flow chemistry
in the laboratory. A very useful feature is the inclusion of validate reactions that can
serve as laboratory test experiments. The subsequent treatment of theoretical founda-
tions for flow chemistry, also know as reaction engineering, provides useful in depth
understanding of continuous reactions.

The second portion of the Graduate Textbook on Flow Chemistry covers specific
reaction classes, concepts, and experimental methods. Homogeneous and heteroge-
neous catalysis, supercritical processes, photochemistry, green chemistry, and radio-
labelled chemistry applications are described in individual chapters along with exam-
ples of flow chemistry for nanotechnology and materials science. Practical oriented
chapters address (i) analytical techniques, specifically in-line monitoring methods,
(ii) examples of automation, (iii) how to build your own flow chemistry set-up as well
an overview of commercially available units, and (iv) importantly, safety aspects of
flow chemistry systems and processes.
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The Editors of this Graduate Textbook on Flow Chemistry, Drs. Ferenc Darvas,
Volker Hessel and Gyorgy Dorman are commended for having taken the initiative
to bring together experts from the field to provide a comprehensive treatment of
fundamental and practical considerations underlying flow chemistry. It promises to
become a useful study text and as well as reference for the graduate students and
practitioners of flow chemistry.

June 2014 Klavs Jensen
Department Head Chemical Engineering,
Massachusetts Institute of Technology, USA

The Editors would like to express their gratitude to the many people who helped to
complete this textbook. They are indebted to all the authors for their outstanding con-
tribution and the valuable and constructive suggestions during the planning. They
are very grateful to Prof. Dr. Jan van Hest (POAC Committee, Radboud University Ni-
jmegen, The Netherlands); to Prof. Floris Rutjes (Radboud University Nijmegen); to
Dr. Varsha Kapoerchan (Organisation for Scientific Research NWO, Advanced Chemi-
cal, Technologies for Sustainability (ACTS), The Netherlands) and to Darholding Inc.
(Hungary) for their financial support. Prof. Volker Hessel kindly acknowledges the
funding provided by the Advanced European Research Council Grant “Novel Process
Windows — Boosted Micro Process Technology” (no 267 443). Special thanks should be
given to all the instrument suppliers for their contributions to the Microreactor Chap-
ter (Chemtrix, FutureChemistry, Invenios, Microinnova, Syrris, ThalesNano, Unigsis).
The Editors’ thanks is extended to Ms. Szilvia Gilmore (Flow Chemistry Society) for
the coordination and monitoring duties during the preparation of the textbook, to Ms.
Karin Sora, Editorial Director Chemistry/Materials Science and Ms. Julia Lauterbach,
Project Editor STM, DeGruyter Publishing House for their enthusiasm, contfnuing mo-
tivation and technical support as well as to Reka Darvas for the great cover design.



Prof. Ferenc Darvas acquired his degrees in Budapest, Hungary
(medical chemistry MS, computer sciences BS, degree in patent
law, PhD in experimental biology). He has been teaching in Hun-
gary, Spain, Austria, and in the United States of America at dif-
ferent universities, presently serves as associate professor at
the Florida International University in Miami. He is author of
140 pre-reviewed papers and 5 books. Dr. Darvas has been in-
volved in introducing microfluidics/flow chemistry methodolo-
gies for synthetizing drug candidates since the late 90’s, which
led him to found ThalesNano. One of his team’s inventions, the desktop high pres-
sure/high temperature flow hydrogenator H-Cube won several innovation awards in
the United States of America and also in Europe, and has been used in more than
60 countries. Dr. Darvas is also the founder and active President of the Flow Chem-
istry Association located in Switzerland.

Prof. Gyorgy Dorman obtained his Ph.D. in organic chemistry
from the Technical University of Budapest in 1986. Between
1986-1988 and 1996-1999 he worked at Sanofi-Chinoin in Bu-
dapest. In 1988-1989 he spent a post-doctoral year in the UK
(University of Salford). Between 1992 and 1996 he was a Visiting
Scientist at the State University of New York, Stony Brook. Be-
tween 1999 and 2008 he served ComGenex/AMRI as Chief Scien-
tific Officer. Since 2008 he is responsible for the scientific inno-
vation of ThalesNano. Dr. Dorman is involved in many training
courses in the area of (bio)organic and flow chemistry. In 2011 he became Professor at
University of Szeged. He is an author of 85 scientific papers and book chapters. Heis a
member of the editorial board of Molecular Diversity and the advisory board of . Flow
Chemistry.

Prof. Volker Hessel studied chemistry at Mainz University (PhD
in organic chemistry, 1993). In 1994 he entered the Institut fiir
Mikrotechnik Mainz GmbH (1996: group leader microreaction
technology). In 2002, Prof. Hessel was appointed Vice Director
R&D at IMM and in 2007 as Director R&D. In 2005 and 2011, he
was appointed as part-time and full professor at Eindhoven Uni-
versity of Technology, respectively, for the chair of “Micro Flow
Chemistry and Process Technology”. He is (co-)author of more
than 270 peer-reviewed publications, with 18 book chapters and
5books. He received the AIChE award “Excellence in Process Development Research”
in 2007 and in 2010 the ERC Advanced Grant “Novel Process Windows”. Prof. Hessel
is in the scientific advisory board of the “International Conference on Microreaction
Technology”. He is Editor-in-Chief of the journal “Green Processing and Synthesis”.
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