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Plate 1
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Figure 26-1 Classical paradigm of verotoxin-induced cellular toxicity in diarrhea-associated hemolytic-uremic syndrome.
Verotoxins (VTs) are AB; exotoxins produced by pathogenic strains of enterohemorrhagic Escherichia coli, most prominently E.
coli ©157:H7. They are composed of five identical B subunits noncovalently bonded to a single A subunit in a donut-shaped
pentameric ring. The A subunit consists of the enzymatically active A1 fragment and smaller A2 fragment. VT binds to susceptible
cell surfaces, particularly endothelial cells, via a Gby glycolipid receptor. This initial binding is followed by receptor-mediated
endocytosis, refrograde transport of the toxin through the transGolgi apparatus and endoplasmic reticulum (ER). During its
retrograde transport through the cell’s acidic, intracellular compartments, VT is cleaved by furin fo release the enzymatically
active AT fragment into the cytosol, where it potently inhibits protein synthesis by a direct and specific activity on ribosomes.
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 m—
Hep Hep Hep
C3b C3b C3b

—_
Cofactor activity

Figure 26-2 Modular organization and critical binding sites of human factor H. Factor H is g plasma-borne regulator of comple-
ment activation composed of 20 homologous subunits of approximately 60 amino acids termed short consensus repeats (SCRs)
or complement control protein (CCP) modules. C3b, heparin (Hep), and sialic acid binding sites are depicted, as is the functional
importance of SCR1-4 in conferring “co-factor activity” to the functional molecule. SCR19-20 represents a mutational
in patients with atypical hemolyic-uremic syndrome, comprising over 70% of all disease mutations.
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Figure 26-3 Mechanism of action of plasma-borne
factor H in protection of endothelial cell surfaces
against activation of the alternative pathway of
complement in diarrhea-negative hemolytic-uremic
syndrome (D-HUS). In the normal individual (A),
plasma-borne factor H binds C3b deposited on a
damaged (or activated) endothelial cell surface.
This interaction is critical in regulating the forma-
tion of C3bBb, the alternative pathway C3 con-
vertase, and mitigating complement-mediated host
cellular injury. Factor H accomplishes this important
task by (1) diminishing factor B binding to C3b,
thereby preventing the formation of C3bBb; (2)
promoting the dissociation of C3bBb (so-called
"decay-accelerating activity”); and (3) acting as a
cofactor for factor | in the cleavage of membrane-
bound C3b (so<alled “cofactor activity”). In a
patient with atypical HUS (B), factor H is func-
tionally deficient and cannot efficiently regulate the
formation of C3bBb deposited on endothelial sur-
faces. Membrane-bound C3b is now left unchecked
to generate C3bBb in an amplification loop that
results in endothelial injury and pathologic
thrombosis.

Plate 2
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Figure 26-4 Structure of human membrane co-
factor protein (MCP, CD46). MCP is a membrane-
bound regulator of complement activation that may
exist as multiple isoforms in a single cell type. All
isoforms share four extracellular, N-terminal SCR
domains, akin fo those of factor H and other regu-
lators of complement activation. These SCRs are
followed by a domain rich in serine, threonine, and
proline (STP region), a 12-amino acid juxtamem-
branous region of unknown sequence homology,
transmembrane domain, cytoplasmic anchor, and
cytoplasmic tail. The four major isoforms of MCP
do not contain the A exon, and all utilize the C
exon, while the B exon is alternatively spliced to
generate BC- and C-containing STP regions. To
date, all disease mutations in atypical hemolytic-
uremic syndrome target the shared SCR4 domain.



Plate 3
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Figure 26-5 Mechanism of action of cell surface human membrane cofactor protein (MCP) in protection of endothelial cells
against activation of the alternative pathway of complement in diarrhea-negative hemolytic-uremic syndrome (D-HUS). In the
normal individual (A), cell surface MCP binds C3b deposited on a damaged (or activated) endothelial cell surface. This
interaction is critical in regulating the formation of C3bBb, the alternative pathway C3 convertase, and mitigating complement-
mediated host cellular injury. MCP accomplishes this important task by acting as a co-factor for factor | in the cleavage of
membrane-bound C3b, so-called “co-factor activity.” In a patient with atypical HUS (B), MCP is functionally deficient and cannot
efficiently regulate the formation of C3bBb deposited on endothelial surfaces. All known mutations of the MCP gene target the
SCR4 domain. As illustrated, the mutant MCP protein is most representative of a T822C transition previously described in two
families (see text). Membrane-bound C3b is now left unchecked to generate C3bBb in an amplification loop that results in
endothelial injury and pathologic thrombosis.

Figure 26-6 Structure of ADAMTS13 (a disintegrin-like and metalloprotease with thombospondin type | motifs). ADAMTS13 is the
plasma-borne von Willebrand factor-protease. It is composed of a series of protein motifs including (from the N-terminus) a signal
peptide, propeptide, reprolysin-ike metalloprotease domain, disintegrin-like domain, thrombospondin repeat (TSR), cysteine-rich
domain, ADAMTS spacer domain, seven additional TSRs, and two CUB (complement components C1r/C1s, urinary epidermal
growth factor and bone morphogenic protein-1) domains. Acquired or inherited deficiencies of ADAMTS13 activity are causally
linked with thrombotic thrombocytopenic purpura.



Plate 4
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Figure 26-7 Mechanism of action of ADAMTS13 in normal individuals and patients with thrombotic thrombocytopenic purpura
(TTP). Secretagogues stimulate endothelial cells to secrete “unusually large” von Willebrand factor (vWF) multimers from their
intracellular storage sites, the Weibel-Palade bodies. Attached to the cell surface (and any exposed subendothelial matrix), these
VWF multimers uncoil under the influence of high fluid shear stress, exposing sites for attachment of circulating platelets (via an
interaction with platelet gpTbot receptors) and cleavage by ADAMTS13. In the normal individual (A), ADAMTS13 successfully
competes for target sites on uncoiled, surface-bound vWF multimers and cleaves them to produce characteristic YWF degradation
products. In a patient with TTP (B), ADAMTS13 activity is severely deficient and cannot effectively compete with circulating
platelets for exposed binding sites. This results in platelet aggregation and pathologic thrombosis.



Plate 5
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Figure 28-1 Schematic of ANCAs and their interaction with
neutrophils causing neutrophil degranulation and tissue injury.
(From Jennette JC, Falk RJ: Pathogenesis of the vascular and
glomerular damage in ANCA-positive vasculitis. Nephrol Dial

Transplant 13[Suppl 1]:19, 1998
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Figure 28-3 Schematic of the theory of autoantigen com-
plementarity. The theory proposes that the immunogen that
begins the sequence of events leading to the production of
autoantibodies is not the autoantigen or its mimic, but rather
its complementary peptide or its mimic. Step 1: The comple-
mentary proteins may be infroduced by invading microbes or
they may be produced by the individual through translation of
anfisense RNA. An antibody is produced in response fo the
complementary protein. Step 2: A second antibody is elicited
against the first antibody, referred to as an anti-idiotypic
response. Step 3: The resultant anti-idiotypic antibodies react
with the autoantigen, whose amino acid sequence is comple-
mentary to the sequence of the initiating antigen. Step 4:
Complementary proteins have a natural affinity because the
hydropathy of one is the opposite of the other.

PR3 Ribbon Model

Figure 28-6 Ribbon model of proteinase 3 molecule. The
100-amino acid apoptosis domain appears as the darkest
strand.
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SECTION 1

The Tools of Molecular
Nephrology

Chapter 1

It is difficult to overstate the impact of the ongoing revolu-
tions in genetics and genomics on biomedical science. In the
three decades since the publication of the first edition of
Brenner & Rector’s The Kidney, the scientific and technologic
tools available to biologists have transformed renal science.
We now know the molecular basis of a large number of inher-
ited kidney diseases and are seeing steady progress in dissecting
the genetics of common and complex renal phenotypes. This,
in turn, is just now beginning to influence the treatment of
patients with kidney disease.

Our rapidly advancing understanding of the pathobiology of
polycystic kidney disease (PKD) is among the best examples.
When, just over 20 years ago, Reeders et al mapped the PKD1
locus to chromosome 16, this sort of genome-wide linkage
analysis in extended pedigrees was a laborious task based on
Southern blot analysis of restriction fragment length poly-
morphisms." With the subsequent cloning of the autosomal
dominant PKD genes PKDI1 and PKD2, and the autosomal
recessive PKD gene PKHDI, investigations into PKD biology
have accelerated at a remarkable pace.” Genetically faithful
animal models of human PKD are now being used to examine
new approaches to therapy. The role of cilia in mediating cyst
formation is becoming increasingly clear. Genetic screens in
zebrafish support the notion of ciliary defects as a unifying
theme in cystic disease (moving from “Fish to Philosopher”
has clearly become an important biologic tool!).¢

Advances in expression cloning methodologies have led to
the identification of a many of the transport proteins that are
critical components of the renal tubule. Related human genetic
studies and genetic manipulations in the mouse have allowed
for the integration of these many molecular components into
a much deeper understanding of integrated tubule physiology
in health and in disease states.

In some cases, molecular advances have led to novel and
highly specific treatments. Work on Fabry disease has pro-
gressed from an understanding of the genetic basis of this
lysosomal storage disease to the development of effective

therapy with recombinant o-galactosidase.” Of course, the
best clinical example of how molecular cloning and protein
expression has transformed clinical practice in nephrology is
recombinant erythropoietin, administered to most end-stage
renal disease patients. In this case, molecular cloning has led
to a clear improvement in the quality of life for many patients.
The ability to clone genes for production of recombinant pro-
teins and expression in cells and animals has also made an
enormous indirect impact on biomedical studies. It is rare now
to see a research publication that does not in some way utilize
reagents developed through molecular genetic technologies.

Understanding even extremely rare forms of inherited dis-
cases can lead to a much deeper understanding of the patho-
physiology of common disease. The cloning of the nephrin
gene by molecular genetic analysis of families with congenital
nephrotic syndrome helped spark an explosion in our under-
standing of glomerular biology.'” Our understanding of the
acquired forms of thrombotic thrombocytopenic purpura
and the hemolytic uremic syndrome has advanced through a
better understanding of inherited mutations in ADAMTSI3
and complement factor H.'"'? Although this has not yet had a
significant direct impact on therapy, these molecular advances
allow investigations of novel treatment approaches to be
much more focused on the underlying pathobiology.

Knowledge of the genetic basis of inherited disease has
direct impact on diagnosis. Although genetic testing has yet to
become commonplace in the practice of nephrology, molecular
genetic analyses can be expected to become increasingly com-
monplace in guiding the diagnosis of a variety of disorders,
from glomerular and cystic disease to electrolyte abnormalities
and hypertension. Such testing will lead to more refined
diagnoses and, in turn, better therapeutic decisions.

Although we are unable to predict the details, certainly
advances in biomedical research will continue to transform
the study and understanding of the kidney. We are just now
beginning to see the impact of such advances on patient care.
The most common forms of kidney disease are clearly



