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Foreword

This Volume 22A, Fundamentals of Modeling for Metals Processing, represents an expansion of the
Handbook series in response to the expressed needs of members of the modeling and simulation
community.

ASM International is indebted to the Co-Editors, David Furrer and S. Lee Semiatin, who had the
vision for a comprehensive presentation of modeling of metals processing. They moved this vision
from inception to this unified collection of content in a remarkably short time, through tireless effort.
They recruited world renowned modeling experts who contributed entirely new content. We are like-
wise indebted to the approximately 120 volunteer authors and reviewers who fulfilled their commit-
ments, squeezing this time intensive activity into their lives busy with family, career, and
community commitments.

While this Handbook serves as an organizing vehicle for acquiring modeling knowledge, ASM
International is pleased to have the means to disseminate this outstanding source of information in
forms most attractive and most readily available to its members and to the technical community.

Modeling is an important aspect of “everything material.” One can model at the submicroscopic
scale where atomic structure is predominant; at an intermediate, or mesoscale at which grain size/grain
structure effects are important; and at the macroscopic, continuum level at which bulk properties are
typically determined. Through ASM’s strategic content development efforts, specific needs for high-
quality materials modeling information are met. Further enhancement will be forthcoming as the
Co-Editors complement this work with Volume 22B, Metals Process Simulation.

The need for modeling metallurgical behavior during processing has long been recognized and ASM
has been a forum for exchange of these ideas. Through mechanistic and phenomenological approaches,
solidification and deformation processes can be optimized, the resulting mechanical properties con-
trolled, and defects minimized. As computing power has increased and its cost decreased, more sophis-
ticated simulation of metallurgical processes has enabled material scientists and engineers to maintain
competitive advantage over those not willing or able to change.

As an organization of material scientists and engineers, ASM International is pleased to offer this
content to practitioners and students of modeling as they continue their exciting journey of tailoring
materials and processes to meet future functional needs. This new Handbook, in its printed and elec-
tronic forms, also moves us closer to achieving a strategic objective that will shape our society for
the next fifty years: to accumulate, review, and distribute comprehensive materials information and
to become the global resource for quality materials information.

Roger Fabian
President
ASM International

Stanley C. Theobald

Managing Director
ASM International

111



Preface

Scientists and engineers have always been curious about cause and effect
relationships within nature. This is also the case relative to metals and mate-
rials. The understanding of the physics of metals has greatly increased from
the earliest days of the field of metallurgy. The discovery of mechanisms
that influence and control the behavior of metals has spurred continued
research and further discovery. Initial understanding and description of
controlling mechanisms were substantially phenomenological, based on
observations and perceived interactions of material and process variables
on resultant metallic material microstructure, mechanical properties and
behavior. The conversion of mechanistic relationships into mathematical
expressions is now the field of materials modeling.

The development of models and modeling methods is now allowing
more rapid discovery of new alloy systems with greater optimization and
application potential. Models are being integrated into computational tools
for design and simulation of component processing and manufacture. The
successful application of models by industry is also resulting in further pull
for even further development of models that are more accurate and predic-
tive. The study of mechanisms that control the evolution and behavior of
metallic materials is continuing today at an even more aggressive pace.

Mechanistic models that more accurately describe the physics of met-
allurgical processes, such as grain growth, precipitation, phase equlibria,
strength and deformation as examples are of great interest and impor-
tance to science and industry alike. Greater understanding of the physics
of metals to the atomistic level, along with increased computational
power, has resulted in further discovery and growth in the field of mod-
eling and simulation.

This Handbook provides a review of the models that support the under-
standing of metallic materials and their processing. An accompanying
volume will provide details of the integration of these models into soft-
ware tools to allow simulation of manufacturing processes. The distinctly
different, but complementary fields of Modeling and Simulation are
providing new and increased capabilities for metallic materials for com-
ponents and systems. The future of the metals industry is moving toward
an integrated computational materials engineering (ICME) approach as a
result of the hard work and dedication of the individuals, teams and orga-
nizations that have and continue to provide the needed models and simu-
lation tools that are capable of providing engineers with accurate
predictive guidance and direction.

D.U. Furrer, FASM
Rolls-Royce Corporation

S.L. Semiatin, FASM
Air Force Research Laboratory



Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has
adopted the practice of publishing data in both metric and customary
U.S. units of measure. In preparing this Handbook, the editors have
attempted to present data in metric units based primarily on Systeme
International d’Unités (SI), with secondary mention of the corresponding
values in customary U.S. units. The decision to use SI as the primary sys-
tem of units was based on the aforementioned resolution of the Board of
Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables
are presented in Sl-based units with the customary U.S. equivalents in
parentheses (text) or adjoining columns (tables). For example, pressure,
stress, and strength are shown both in SI units, which are pascals (Pa)
with a suitable prefix, and in customary U.S. units, which are pounds
per square inch (psi). To save space, large values of psi have been con-
verted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric
tonne (kg x 10%) has sometimes been shown in megagrams (Mg). Some
strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on art-
work. References in the accompanying text to data in the illustrations are
presented in both Sl-based and customary U.S. units. On graphs and
charts, grids corresponding to SI-based units usually appear along the left
and bottom edges. Where appropriate, corresponding customary U.S.
units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing
group may be given in only the units used in that specification or in dual
units, depending on the nature of the data. For example, the typical yield
strength of steel sheet made to a specification written in customary U.S.

Vi

units would be presented in dual units, but the sheet thickness specified
in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the
standard recommends a particular system of units are presented in the
units of that system. Wherever feasible, equivalent units are also pre-
sented. Some statistical data may also be presented in only the original
units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/
ASTM SI-10, with attention given to the number of significant digits in
the original data. For example, an annealing temperature of 1570 °F con-
tains three significant digits. In this case, the equivalent temperature
would be given as 855 °C; the exact conversion to 854.44 °C would
not be appropriate. For an invariant physical phenomenon that occurs at
a precise temperature (such as the melting of pure silver), it would be
appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some
instances (especially in tables and data compilations), temperature values
in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several
exceptions to strict conformance to IEEE/ASTM SI-10; in each instance,
the exception has been made in an effort to improve the clarity of the
Handbook. The most notable exception is the use of g/cm® rather than
kg/m® as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units
formed by combination of several basic units. Therefore, all of the units
preceding the virgule are in the numerator and all units following the vir-
gule are in the denominator of the expression; no parentheses are required
to prevent ambiguity.
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Introduction to Fundamentals of
Modeling for Metals Processing

D.U. Furrer, Rolls-Royce Corporation

S. L. Semiatin, Air Force Research Laboratory

THE FORMULATION AND APPLICATION
of modeling and simulation methods for metallic
materials and manufacturing process design and
development is rapidly increasing. Classic models
that predict the behavior of metals under proces-
sing conditions are continuing to be used and
enhanced with greater understanding of the
mechanisms that control the evolution of micro-
structure, texture, and defects. New theories and
associated mathematical models are being devel-
oped and applied to metallic alloy systems for
existing and new processing methods. To comple-
ment empirical descriptions of material behavior
during processing, so-called first-principles
approaches, such as those based on atomistic and
molecular dynamics calculations, are now being
developed to provide fundamental understanding
of the mechanisms that control observed beha-
viors of existing and emerging alloys, such as
those for unique or highly demanding
applications.

The recent development of the integrated
computational materials engineering (ICME) dis-
cipline allows fundamental research to be linked
to industrial applications (Ref 1). See the article
“Integrated Computational Materials Engineer-
ing” in this Volume. The refinement of models
and modeling methods results in greater capabil-
ity and accuracy of metallurgical predictions,
such as phase equilibria, microstructure, and
subsequent mechanical properties. The ability to
rapidly apply fundamental models to practical
component design and manufacturing applica-
tions has spurred unprecedented collaboration
between universities, research laboratories, soft-
ware companies, and industrial users of modeling
and simulation tools. The linkage of component
design, alloy design, and component manufacture
through modeling and simulation methods will
allow for continued advancement in the area of
alloy research, advanced process and equipment

development, and enhanced component
capability.
Modeling and simulation activities are

increasing within the materials field as well as
other science and engineering disciplines.
Development, enhancement, and implementation

of computational modeling and analysis technolo-
gies to describe and predict physics-based
processes are occurring globally within universi-
ties and research centers in nearly every country
(Ref 2). In addition to increased collaboration
between industry and academia, there are
increased numbers of multinational collaborative
efforts aimed at increasing the capabilities and
state-of-the-art of material and process modeling.
Fundamental understanding of metallic materials
and processing is increasing rapidly and becom-
ing available globally through these and other
science and engineering efforts.

Volumes 22A and 22B of the ASM Hand-
book series describe the current state-of-the-art
of modeling and simulation for metals proces-
sing. The present Volume (22A), Fundamentals
of Modeling for Metals Processing, focuses on
mathematical descriptions of the behavior of
metallic materials during processing (and resul-
tant properties) as well as process modeling per
se. These models may be broadly characterized
into three types on the basis of approach and
mathematical expression utilized as being
phenomenological (based primarily on direct
observations/measurements), mechanistic/
physics based, or a combination of the two.

Phenomenological and mechanistic models
are also separated by application type, includ-
ing materials models or process models. Mate-
rials models for metals can also be considered
metallurgical process models, where grain
growth, precipitation, recrystallization, or dislo-
cation impedance are examples of processes
within metals and alloys. Materials models
describe how, for example, microstructure,
crystallographic texture, and defects evolve as
a function of local metallurgical process vari-
ables, including history and path dependences.

Process models, on the other hand, describe
manufacturing processes that require under-
standing of external independent parameters
and boundary conditions and provide informa-
tion about macroscopic component changes
and/or information for metallurgical process
models. The nomenclature within this field,
however, can cause some confusion, so it is

important to understand and clearly define the
type of models being discussed.

Manufacturing process modeling addresses
the integration of material behavior models with
the description of specific processes (e.g.,
forging, investment casting), which typically
include equipment/process characteristics and
interface effects (such as heat transfer and fric-
tion). The equations describing the physical
phenomena in material behavior models and/or
their coupling with process models are often
too complex for solution by analytical means,
except under somewhat restrictive (albeit often
insightful) conditions. This is usually the case
for real-world industrial processes. In such cases,
numerical simulation methods must be used to
describe material behavior, process mechanics,
and processing-structure-mechanical behavior
relationships. Volume 22B, Metals Process
Simulation, deals with the state-of-the-art of the
simulation of specific materials processes,
including associated input-data requirements.

Various major sections of this Volume sum-
marize the fundamentals of materials modeling,
including modeling of microstructure and tex-
ture evolution, modeling of damage and defect
evolution, modeling of mechanical properties,
and material-specific models for industrial
alloys. This article provides a brief historical
perspective, a classification of metallurgical
processes that are discussed within this
Volume, basic model development efforts, and
an overview of the potential future directions
for the modeling of metals processing.

Historical Perspective

Models of various forms have been devel-
oped nearly since the beginning of time.
Models can be very simple, such as an “if/then”
relationship, or extremely complex mathemati-
cal expressions with numerous parameters,
some of which may be easily measured and
well understood and others that are not physi-
cally observable or readily inferred. All models
have one thing in common: They attempt to
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provide improved understanding of the nature
and the variables that influence and control the
results of processes, whether a naturally occur-
ring process or man-made. The study of
processes leads to theories and subsequent
models that can and are used to predict future
applications of the studied process. Figure 1
shows a schematic flow path for the develop-
ment of models that provide improved under-
standing of processes, where metallurgical or
manufacturing process-based.

Models are developed due to need or curios-
ity. The drive to increase understanding of
nature and metallurgical processes has provided
a substantial foundation for materials and
process modeling. For the most part, the devel-
opment of material behavior and process mod-
els has been spearheaded by metallurgical and
mechanical engineers, respectively. Over the
last two decades, however, a great emphasis
has been placed on the need for coupling mate-
rial behavior and process models, leading to
work that is truly interdisciplinary in nature.

Material behavior models for processing
have evolved from ones that are largely empiri-
cal in nature to those that incorporate physics-
based mechanisms. For example, work in the
first half of the 20th century led to engineering
(phenomenological) models of:

e Deformation and strain hardening, such as
Schmid’s law and the Hollomon equation

e Kinetics of recrystallization (such as the
Avrami equation), grain growth (such as
the Beck equation), and precipitation/phase
transformation

e Ductility for solid-state processes

Similarly, phenomenological models of macro-
structure evolution during solidification and

developed for a number of alloy systems. For
the most part, these phenomenological models
were applicable only to the range of process
parameters for which measurements had been
made and hence were essentially methods of fit-
ting experimental data. The development of a
fundamental understanding of the mechanisms
underlying these phenomena, such as disloca-
tion glide/climb and diffusion, led to rudimen-
tary physics-based models, such as those for
the large-strain deformation of polycrystalline
aggregates, phase transformations based on
classical nucleation theory and diffusional
growth, and grain growth, among others, in
the 1940s to1960s. Beginning in the 1980s,
the incorporation of the fundamental concepts
of thermodynamics and thermal physics (due
to, for example, Gibbs, Ising, and others) led to
a great expansion of mechanism-based models,
such as those designed to predict phase equili-
bria (e.g., Calphad), recrystallization and grain
growth (Monte Carlo and cellular-automaton
techniques), and precipitation and solidification
problems (e.g., phase-field methods). The suc-
cessful implementation of these newer techni-
ques was made possible by the advent of
inexpensive computers and ever-increasing
computing power beginning in the 1990s.
Modern process models have evolved from
relatively simple analytical and numerical tech-
niques. These include the slab, upper-bound,
and slip-line field methods (for predicting
loads/forming pressures during metal forming,
for instance) and the solution of relatively
simple partial-differential equations (for vari-
ous heat flow, solidification, and diffusion
problems) that evolved during the 1920s to
1980s. The development of mainframe, mini-,
and then microcomputers and associated
software beginning in the 1970s and 1980s led
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to the ability to simulate much more complex
processing problems, often based on finite-
difference or finite-element numerical techni-
ques. These latter approaches have also enabled
the simulation of coupled phenomena, such as

those involving simultaneous deformation/
solidification, energy transport, and mass
transport.

Classes of Material Behavior Models

Material behavior models can be grouped
broadly into three classes: statistical, phenome-
nological, and mechanism based.

Statistical models typically require large
amounts of experimental data to derive a math-
ematical relationship between independent/
controlled process parameters and predictions
of metallurgical process results. For example,
linear regression analysis is often used to “fit”
pairs or a series of data to determine relation-
ships (Ref 4). This approach has pros and cons.
One advantage is that data generated during the
manufacture of components can often be used
to generate models, but the available data often
do not contain all of the required parameters.
In other words, the data may mask second-order
or confounding parameters, making difficult the
establishment of statistical models that capture
the fundamental relationships. Other disadvan-
tages consist of not knowing a priori what met-
allurgical or processing parameters influence
the specific results of a process, and the issue
that not all metallurgical processes and relation-
ships are linear. A specific type of statistical
analysis, known as artificial neural-network
(ANN) modeling, overcomes some of these
drawbacks for the development of multivari-
able, nonlinear relationships, but this approach
also requires large amounts of data (Ref 5).
In addition, ANN, like other statistical
approaches, suffers from not being able to pre-
dict results outside the range of data used for
“training” the model. Since the physics of the
metallurgical process being modeled are not
known, extrapolating statistical-based models
outside the parameter range in which they are
trained is not advisable and can lead to errors
and large deviations from reality if the physics
of the process change are not captured within
the model.

Phenomenological models typically rely on
equations that define the relationship between
process variables and resulting microstructure,
properties, and so on. These types of models
can be used to describe phenomena such as
recrystallization, grain growth, and creep of
metallic materials. For example, Avrami (sig-
moidal-type) equations have been used
frequently to fit observations of the kinetics of
static (and dynamic) recrystallization and
other phase transformations during metals pro-
cessing (Ref 6-8). Such relationships quantify
the nucleation and growth mechanisms that
lead to an initial slow incubation period, fol-
lowed by a rapid rate of increase in the



recrystallized/transformed volume fraction, and
then a final reduction in the rate of the process
until the reaction or metallurgical process
completes. Typical applications include the rate
of decomposition of austenite in steels that
underlie time-temperature-transformation and
cooling-transformation diagrams (Ref 9). Simi-
larly, Arrhenius rate-type equations are often
used to describe the temperature dependence
of metallurgical phenomena, such as the plastic
flow of metals at high temperature (using the
temperature-compensated strain rate, or Zener-
Hollomon parameter), grain growth (Ref 10),
and creep (using the Larson-Miller parameter)
(Ref 11).

In phenomenological models, the underlying
mechanism(s) that control the rate of the metal-
lurgical process are often not known precisely
nor explicitly incorporated. This type of model-
ing approach may also have several inherent
limitations:

e Experimental data are often needed to estab-
lish or calibrate the relationship, even for
mathematical expressions in which the form
is known.

e [f the mechanism controlling the process
changes, the form of the fit assumed in the
model may not be appropriate.

Mechanistic models are often called physics
based due to their ability to include all of the
relevant physical parameters that influence the
outcome of a process to a high degree of fidel-
ity. As such, mechanism-based models tend to
be the most robust.

Examples of mechanistic models comprise
phase-field approaches for microstructure
evolution, such as solidification, grain growth,
and solid-state precipitate growth. In each of
these cases, the mechanisms that control the
migration of grain or interface boundaries, such
as bulk diffusion or interface reaction, and

Recent discovery of microtwins in nickel-base
superalloys after creep deformation has led to
further investigation and development of a model that
describes this new mechanism. Courtesy of M. Mills,
The Ohio State University

Fig. 2
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suitable input parameters, such as grain/inter-
face boundary energy. must be known (Ref
12, 13). An example of a mechanistic mechani-
cal property relationship is the Hall-Petch
model for yield strength as a function of grain
size of single-phase alloys (Ref 14). This model
relates the applied stress for plastic flow to the
slip length within a grain and the stress concen-
tration for slip transmission into neighboring
grains. This simple model is effective and is
readily used for metallurgical understanding of
tensile property control and optimization (Ref
15). However, the grain size is not the only
microstructural feature that can influence the
yield strength. Additional models are required
to describe contributions from solid-solution,
precipitation/dispersion, and dislocation
strengthening (strain hardening).

Mechanistic models do provide the ability to
predict behavior outside the range for which
they were developed, provided the controlling
mechanism is unchanged. In some cases, the
failure of a mechanism-based model to describe
observations may provide the impetus for new
fundamental understanding. For instance, such
was the case for the discovery of microtwinning
during creep of nickel-base superalloys (Ref
16). Existing mechanistic creep models did
not accurately capture the behavior within a
specific temperature-stress regime. After care-
ful focused observations, the new mechanism
was discovered. Figure 2 shows micrographic
evidence of the new creep mechanism,
microtwinning, within nickel-base superalloys.

This Volume contains articles on a range of
metallurgical and materials processes. Table 1
lists the various formulations and mathematical
methods to predict the relationships and
interactions within metallurgical processes.
Further development of modeling tools will
continue to be seen in both mathematical
expression and mathematical formulation for
calculation of predictions.

Future Outlook
Modeling and simulation technology will

continue to grow because it provides a means

Table 1
for metals processing

to assess “what-if” scenarios and to conduct
virtual experiments. Material behavior and pro-
cess models provide useful information to both
design and manufacturing engineers. Currently,
industry is developing holistic component and
product design approaches that include metal-
lurgical and process models. In this regard,
ICME provides a means of mathematically
linking complex metallurgical processes to the
mechanical design of components. ICME will
be the prevailing method in the future for
industry to design and optimize components,
alloys, and manufacturing processes in a
fully-coupled manner.

Another trend that is gaining momentum is
the increasing interest of academic and research
institutions in the development of fundamental
material behavior and process models for the
manufacture of metal products. This may be
due to factors such as:

e Widespread availability of
computer hardware and software

e Limited mechanistic understanding of
metallurgical phenomena under processing
conditions for alloys of commercial impor-
tance and hence a strong technology pull
from industry

e Increased use of modeling and simulation
within industry develops a need for engi-
neers and scientists with knowledge and
background in this area

e Acceptance of modeling and simulation in
general as a worthy research subject

e Application of modeling and simulation as a
teaching method within multidisciplinary
engineering fields

e Shift toward near-term investments and the
concomitant reduction in research staff
within many companies

inexpensive

Despite the reduction in modeling research
within industry, the application of models in
the commercial milieu is creating an increased
demand for modeling tools, engineering
analysis capabilities, and engineers that can
apply modeling and simulation tools to indus-
trial challenges. These needs are being
addressed by academia in a very synergistic

Examples of mathematical modeling approach and applications

Tool

Typical application(s)

Slab, upper-bound, slip-line field models
Finite-element models deformation processes

Loads, metal flow, gross defects in bulk forming
Strain/metal flow, strain rate, temperature in deformation processes:

powder consolidation

Finite-element/finite-difference models
solidification processes

Nucleation and growth models

Crystal-plasticity models

Cellular-automata models

Phase-field models

Monte Carlo models

Vertex models

Defect/failure models solid-state processes

Defect/failure models — solidification

Constitutive equation models

Fluid flow, solidification in solidification processes

Plethora of phase transformations, recrystallization, etc.
Deformation-texture evolution

Recrystallization, solidification microstructure
Precipitation, grain growth, solidification microstructure
Grain growth, recrystallization

Grain growth

Cavity nucleation, growth, coalescence; failure maps
Hot tearing, porosity

Material behavior, metal flow




