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Preface

In the preface from the 1979 predecessor to this book, Hopcroft and Ullman
marveled at the fact that the subject of automata had exploded, compared with
its state at the time they wrote their first book, in 1969. Truly, the 1979 book
contained many topics not found in the earlier work and was about twice its
size. If you compare this book with the 1979 book, you will find that, like the
automobiles of the 1970’s, this book is “larger on the outside, but smaller on
the inside.” That sounds like a retrograde step, but we are happy with the
changes for several reasons.

First, in 1979, automata and language theory was still an area of active
research. A purpose of that book was to encourage mathematically inclined
students to make new contributions to the field. Today, there is little direct
research in automata theory (as opposed to its applications), and thus little
motivation for us to retain the succinct, highly mathematical tone of the 1979
book. .

Second, the role of automata and language theory has changed over the
past two decades. In 1979, automata was largely a graduate-level subject, and
we imagined our reader was an advanced graduate student, especially those
using the later chapters of the book. Today, the subject is a staple of the
undergraduate curriculum. As such, the content of the book must assume less
in the way of prerequisites from the student, and therefore must provide more
of the background and details of arguments than did the earlier book.

A third change in the environment is that Computer Science has grown to
an almost unimaginable degree in the past two decades. While in 1979 it was
often a challenge to fill up a curriculum with material that we felt would survive
the next wave of technology, today very many subdisciplines compete for the
limited amount of space in the undergraduate curriculum.

Fourthly, CS has become a more vocational subject, and there is a severe
pragmatism among many of its students. We continue to believe that aspects
of automata theory are essential tools in a variety of new disciplines, and we
believe that the theoretical, mind-expanding exercises embodied in the typical
automata course retain their value, no matter how much the student prefers to
learn only the most immediately monetizable technology. However, to assure
a continued place for the subject on the menu of topics available to the com-
puter science student, we believe it is necessary to emphasize the applications

il
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along with the mathematics. Thus, we have replaced a number of the more
abstruse topics in the earlier book with examples of how the ideas are used
today. While applications of automata and language theory to compilers are
now so well understood that they are normally covered in a compiler course,
there are a variety of more recent uses, including model-checking algorithms
to verify protocols and document-description languages that are patterned on
context-free grammars.

A final explanation for the simultaneous growth and shrinkage of the book
is that we were today able to take advantage of the TEX and ITEX typesetting
systems developed by Don Knuth and Les Lamport. The latter, especially,
encourages the “open” style of typesetting that makes books larger, but easier
to read. We appreciate the efforts of both men.

Use of the Book

This book is suitable for a quarter or semester course at the Junior level or
above. At Stanford, we have used the notes-in CS154, the course in automata
and language theory. It is a one-quarter course, which both Rajeev and Jeff have
taught. Because of the limited time available, Chapter 11 is not covered, and
some of the later material, such as the more difficult polynomial-time reductions
in Section 10.4 are omitted as well. The book’s Web site (see below) includes
notes and syllabi for several offerings of CS154.

Some years ago, we found that many graduate students came to Stanford
with a course in automata theory that did not include the theory of intractabil-
ity. As the Stanford faculty believes that these ideas are essential for every
computer scientist to know at more than the level of “NP-complete means it
takes too long,” there is another course, CS154N, that students may take to
cover only Chapters 8, 9, and 10. They actually participate in roughly the last
third of CS154 to fulfill the CS154N requirement. Even today, we find several
students each quarter availing themselves of this option. Since it requires little
extra effort, we recommend the approach.

Prerequisites

To make best use of this book, students should have taken previously a course
covering discrete mathematics, e.g., graphs, trees, logic, and proof techniques.
We assume also that they have had several courses in programming, and are
familiar with common data structures, recursion, and the role of major system
components such as compilers. These prerequisites should be obtained in a
typical freshman-sophomore CS program.



Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Some of the exercises or parts are marked with a star. For these exercises,
we shall endeavor to maintain solutions accessible through the book’s Web page.
These solutions are publicly available and should be used for self-testing. Note
that in a few cases, one exercise B asks for modification or adaptation of your
solution to another exercise A. If certain parts of A have solutions, then you
should expect the corresponding parts of B to have solutions as well.

Support on the World Wide Web

The book’s home page is
http://www-db.stanford.edu/ ullman/ialc.html

Here are solutions to starred exercises, errata as we learn of them, and backup
materials. We hope to make available the notes for each offering of CS154 as
we teach it, including homeworks, solutions, and exams.
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Chapter 1

Automata: The Methods
and the Madness

Automata theory is the study of abstract computing devices, or “machines.”
Before there were computers, in the 1930’s, A. Turing studied an abstract ma-
chine that had all the capabilities of today’s computers, at least as far as in
what they could compute. Turing’s goal was to describe precisely the boundary
between what a computing machine could do and what it could not do; his
conclusions apply not only to his abstract Turing machines, but to today’s real
machines.

In the 1940’s and 1950’s, simpler kinds of machines, which we today call
“finite automata,” were studied by a number of researchers. These automata,
originally proposed to model brain function, turned out to be extremely useful
for a variety of other purposes, which we shall mention in Section 1.1. Also in
the late 1950’s, the linguist N. Chomsky began the study of formal “grammars.”
While not strictly machines, these grammars have close relationships to abstract
automata and serve today as the basis of some important software components,
including parts of compilers.

In 1969, S. Cook extended Turing’s study of what could and what could
not be computed. Cook was able to separate those problems that can be solved
efficiently by computer from those problems that can in principle be solved, but
in practice take so much time that computers are useless for all but very small
instances of the problem. The latter class of problems is called “intractable,”
or “NP-hard.” It is highly unlikely that even the exponential improvement in
computing speed that computer hardware has been following (“Moore’s Law”)
will have significant impact on our ability to solve large instances of intractable
problems.

All of these theoretical developments bear directly on what computer scien-
tists do today. Some of the concepts, like finite automata and certain kinds of
formal grammars, are used in the design and construction of important kinds
of software. Other concepts, like the Turing machine, help us understand what
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we can expect from our software. Especially, the theory of intractable problems
lets us deduce whether we are likely to be able to meet a problem “head-on”
and write a program to solve it (because it is not in the intractable class), or
whether we have to find some way to work around the intractable problem:
find an approximation, use a heuristic, or use some other method to limit the
amount of time the program will spend solving the problem.

In this introductory chapter, we begin with a very high-level view of what
automata theory is about, and what its uses are. Much of the chapter is de-
voted to a survey of proof techniques and tricks for discovering proofs. We cover
deductive proofs, reformulating statements, proofs by contradiction, proofs by
induction, and other important concepts. A final section introduces the con-
cepts that pervade automata theory: alphabets, strings, and languages.

1.1 Why Study Automata Theory?

There are several reasons why the study of automata and complexity is an
important part of the core of Computer Science. This section serves to introduce
the reader to the principal motivation and also outlines the major topics covered
in this book.

1.1.1 Introduction to Finite Automata

Finite automata are a useful model for many important kinds of hardware and
software. We shall see, starting in Chapter 2, examples of how the concepts are
used. For the moment, let us just list some of the most important kinds:

1. Software for designing and checking the behavior of digital circuits.

2. The “lexical analyzer” of a typical compiler, that is, the compiler com-
ponent that breaks the input text into logical units, such as identifiers,
keywords, and punctuation.

3. Software for scanning large bodies of text, such as collections of Web
pages, to find occurrences of words, phrases, or other patterns.

4. Software for verifying systems of all types that have a finite number of
distinet states, such as communications protocols or protocols for secure
exchange of information.

While we shall soon meet a precise definition of automata of various types,
let us begin our informal introduction with a sketch of what a finite automaton
is and does. There are many systems or components, such as those enumerated
above, that may be viewed as being at all times in one of a finite number
of “states.” The purpose of a state is to remember the relevant portion of the
system’s history. Since there are only a finite number of states, the entire history
generally cannot be remembered, so the system must be designed carefully, to
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remember what is important and forget what is not. The advantage of having
only a finite number of states is that we can implement the system with a fixed
set of resources. For example, we could implement it in hardware as a circuit, or
as a simple form of program that can make decisions looking only at a limited
amount of data or using the position in the code itself to make the decision.

Example 1.1: Perhaps the simplest nontrivial finite automaton is an on/off
switch. The device remembers whether it is in the “on” state or the “off” state,
and it allows the user to press a button whose effect is different, depending on
the state of the switch. That is, if the switch is in the off state, then pressing
the button changes it to the on state, and if the switch is in the on state, then
pressing the same button turns it to the off state.

Push

) ()

Push
Figure 1.1: A finite automaton modeling an on/off switch

The finite-automaton model for the switch is shown in Fig. 1.1. As for all
finite automata, the states are represented by circles; in this example, we have
named the states on and off. Arcs between states are labeled by “inputs,” which
represent external influences on the system. Here, both arcs are labeled by the
input Push, which represents a user pushing the button. The intent of the two
arcs is that whichever state the system is in, when the Push input is received
it goes to the other state.

One of the states is designated the “start state,” the state in which the
system is placed initially. In our example, the start state is off, and we conven-
tionally indicate the start state by the word Start and an arrow leading to that
state.

It is often necessary to indicate one or more states as “final” or “accepting”
states. Entering one of these states after a sequence of inputs indicates that
the input sequence is good in some way. For instance, we could have regarded
the state on in Fig. 1.1 as accepting, because in that state, the device being
controlled by the switch will operate. It is conventional to designate accepting
states by a double circle, although we have not made any such designation in
Fig. 1.1. O

Example 1.2: Sometimes, what is remembered by a state can be much more
complex than an on/off choice. Figure 1.2 shows another finite automaton that
could be part of a lexical analyzer. The job of this automaton is to recognize



