: : , JOHN E. HOPCROFT
Introduction to RAJEEV MOTWANI

vAutOmata Theory, JEFFREY D. ULLMAN
Languages, and Computation

SECOND EDITION

Automata Theory, RIS

@ JOHN E. HOPCROFT
Cornell University

RAJEEV MOTWANI
| Stanford University

B JEFFREY D. ULLMAN
Stanford University

Addison
Wesley

—

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Senior Acquisitions Editor Masite Suarez-Rivas
Project Editor Katherine Harutunian
Executive Marketing Manager Michael Hirsch
Cover Design Leslie Haimes
Art Direction Regina Hagen
Prepress and Manufacturing Caroline Fell

Access the latest information about Addison-Wesley titles from our World Wide
Web site: http://www.awl.com

The programs and applications presented in this book have been included for
their instructional value. They have been tested with care, but are not guaran-
teed for any particular purpose. The publisher does not offer any warranties or
representations, not does it accept any liabilities with respect to the programs
or applications.

Library of Congress Cataloging-in-Publication Data

Hopcroft, John E., 1939-
Introduction to automata theory, languages, and computation / John E.
Hopcroft, Rajeev Motwani, Jeffrey D. Ullman.—2nd ed.
p. cm.
ISBN 0-201-44124-1
1. Machine theory. 2. Formal languages. 3. Computational complexity.
[. Motwani, Rajeev. II. Ullman, Jeffrey D., 1942-.

QA267 .Hb56 2001
511.3—dc21 00-064608

Copyright © 2001 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.

2345678910-MA-04030201

Preface

In the preface from the 1979 predecessor to this book, Hopcroft and Ullman
marveled at the fact that the subject of automata had exploded, compared with
its state at the time they wrote their first book, in 1969. Truly, the 1979 book
contained many topics not found in the earlier work and was about twice its
size. If you compare this book with the 1979 book, you will find that, like the
automobiles of the 1970’s, this book is “larger on the outside, but smaller on
the inside.” That sounds like a retrograde step, but we are happy with the
changes for several reasons.

First, in 1979, automata and language theory was still an area of active
research. A purpose of that book was to encourage mathematically inclined
students to make new contributions to the field. Today, there is little direct
research in automata theory (as opposed to its applications), and thus little
motivation for us to retain the succinct, highly mathematical tone of the 1979
book. .

Second, the role of automata and language theory has changed over the
past two decades. In 1979, automata was largely a graduate-level subject, and
we imagined our reader was an advanced graduate student, especially those
using the later chapters of the book. Today, the subject is a staple of the
undergraduate curriculum. As such, the content of the book must assume less
in the way of prerequisites from the student, and therefore must provide more
of the background and details of arguments than did the earlier book.

A third change in the environment is that Computer Science has grown to
an almost unimaginable degree in the past two decades. While in 1979 it was
often a challenge to fill up a curriculum with material that we felt would survive
the next wave of technology, today very many subdisciplines compete for the
limited amount of space in the undergraduate curriculum.

Fourthly, CS has become a more vocational subject, and there is a severe
pragmatism among many of its students. We continue to believe that aspects
of automata theory are essential tools in a variety of new disciplines, and we
believe that the theoretical, mind-expanding exercises embodied in the typical
automata course retain their value, no matter how much the student prefers to
learn only the most immediately monetizable technology. However, to assure
a continued place for the subject on the menu of topics available to the com-
puter science student, we believe it is necessary to emphasize the applications

il

iv PREFACE

along with the mathematics. Thus, we have replaced a number of the more
abstruse topics in the earlier book with examples of how the ideas are used
today. While applications of automata and language theory to compilers are
now so well understood that they are normally covered in a compiler course,
there are a variety of more recent uses, including model-checking algorithms
to verify protocols and document-description languages that are patterned on
context-free grammars.

A final explanation for the simultaneous growth and shrinkage of the book
is that we were today able to take advantage of the TEX and ITEX typesetting
systems developed by Don Knuth and Les Lamport. The latter, especially,
encourages the “open” style of typesetting that makes books larger, but easier
to read. We appreciate the efforts of both men.

Use of the Book

This book is suitable for a quarter or semester course at the Junior level or
above. At Stanford, we have used the notes-in CS154, the course in automata
and language theory. It is a one-quarter course, which both Rajeev and Jeff have
taught. Because of the limited time available, Chapter 11 is not covered, and
some of the later material, such as the more difficult polynomial-time reductions
in Section 10.4 are omitted as well. The book’s Web site (see below) includes
notes and syllabi for several offerings of CS154.

Some years ago, we found that many graduate students came to Stanford
with a course in automata theory that did not include the theory of intractabil-
ity. As the Stanford faculty believes that these ideas are essential for every
computer scientist to know at more than the level of “NP-complete means it
takes too long,” there is another course, CS154N, that students may take to
cover only Chapters 8, 9, and 10. They actually participate in roughly the last
third of CS154 to fulfill the CS154N requirement. Even today, we find several
students each quarter availing themselves of this option. Since it requires little
extra effort, we recommend the approach.

Prerequisites

To make best use of this book, students should have taken previously a course
covering discrete mathematics, e.g., graphs, trees, logic, and proof techniques.
We assume also that they have had several courses in programming, and are
familiar with common data structures, recursion, and the role of major system
components such as compilers. These prerequisites should be obtained in a
typical freshman-sophomore CS program.

Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Some of the exercises or parts are marked with a star. For these exercises,
we shall endeavor to maintain solutions accessible through the book’s Web page.
These solutions are publicly available and should be used for self-testing. Note
that in a few cases, one exercise B asks for modification or adaptation of your
solution to another exercise A. If certain parts of A have solutions, then you
should expect the corresponding parts of B to have solutions as well.

Support on the World Wide Web

The book’s home page is
http://www-db.stanford.edu/ ullman/ialc.html

Here are solutions to starred exercises, errata as we learn of them, and backup
materials. We hope to make available the notes for each offering of CS154 as
we teach it, including homeworks, solutions, and exams.

Acknowledgements

A handout on “how to do proofs” by Craig Silverstein influenced some of the
material in Chapter 1. Comments and errata on drafts of this book were re-
ceived from: Zoe Abrams, George Candea, Haowen Chen, Byong-Gun Chun,
Jeffrey Shallit, Bret Taylor, Jason Townsend, and Erik Uzureau. They are
gratefully acknowledged. Remaining errors are ours, of course.

J. E. H.

R. M.

J.D. U.

Ithaca NY and Stanford CA
September, 2000

Table of Contents

1 Automata: The Methods and the Madness
1.1 Why Study Automata Theory?
1.1.1 Introduction to Finite Automata
1.1.2 Structural Representations
1.1.3 Automata and Complexity
1.2 Introduction to Formal Proof
1.2.1 Deductive Proofs
1.2.2 Reduction to Definitions
1.2.3 Other Theorem Forms
1.2.4 Theorems That Appear Not to Be If-Then Statements . .
1.3 Additional Forms of Proof
1.3.1 Proving Equivalences About Sets
1.3.2 The Contrapositive
1.3.3 Proof by Contradiction
1.3.4 Counterexamples
1.4 Inductive Proofs v

1.5 The Central Concepts of Automata Theory
1.5.1 Alphabets L
1.5.2 Strings
1.5.3 Languages« v v i i e i i e e e e
1.54 Problems

1.6 Summary of Chapter 1

1.7 References for Chapter 1

2.1

1.4.1 Inductions on Integers
1.4.2 More General Forms of Integer Inductions
1.4.3 Structural Inductions L.
1.4.4 Mutual Inductions

Finite Automata
An Informal Picture of Finite Automata
2.1.1 The Ground Rules

2:1.2 ThePiotocol . . . : . .o oawmmmumss s s 55503
2.1.3 Enabling the Automata to Ignore Actions

vii

viii

2.2

2.3

24

2.5

2.6
2.7

TABLE OF CONTENTS

2.1.4 The Entire System as an Automaton
2.1.5 Using the Product Automaton to Validate the Protocol
Deterministic Finite Automata
2.2.1 Definition of a Deterministic Finite Automaton
2.2.2 How a DFA Processes Strings
2.2.3 Simpler Notations for DFA’s
2.2.4 Extending the Transition Function to Strings
2.2.5 The LanguageofaDFA
2.2.6 Exercises for Section 2.2
Nondeterministic Finite Automata
2.3.1 An Informal View of Nondeterministic Finite Automata .
2.3.2 Definition of Nondeterministic Finite Automata
2.3.3 The Extended Transition Function
234 The Languageofan NFA
2.3.5 Equivalence of Deterministic and Nondeterministic Finite
Automata
2.3.6 A Bad Case for the Subset Construction
2.3.7 Exercises for Section 2.3
An Application: Text Search
2.4.1 Finding Strings in Text
2.4.2 Nondeterministic Finite Automata for Text Search
2.4.3 A DFA to Recognize a Set of Keywords
2.44 Exercises for Section 2.4
Finite Automata With Epsilon-Transitions
2.5.1 Uses of e-Transitions
2.5.2 The Formal Notation for an e-NFA
2.5.3 Epsilon-Closures
2.5.4 Extended Transitions and Languages for e-NFA’s
2.5.5 Eliminating e-Transitions
2.5.6 Exercises for Section 2.5
Summary of Chapter 2
References for Chapter 2

3 Regular Expressions and Languages

3.1

3.2

Regular Expressions
3.1.1 The Operators of Regular Expressions
3.1.2 Building Regular Expressions
3.1.3 Precedence of Regular-Expression Operators
3.1.4 Exercises for Section 3.1
Finite Automata and Regular Expressions
3.2.1 From DFA’s to Regular Expressions
3.2.2 Converting DFA’s to Regular Expressions by Eliminating
States 5 ww s e wm s 5 # 4 § 5 8 5 8 5 575 5% 55 % s s
3.2.3 Converting Regular Expressions to Automata
3.2.4 Exercises for Section 3.2

45
45
46
46
48
49
52
33
35
56
57
58
39

60
65
66
68
68
69
70
72
72
72
74

TABLE OF CONTENTS ix

3.3 Applications of Regular Expressions 108
3.3.1 Regular Expressionsin UNIX 108
3.3.2 Lexical Analysis- « o w o'w o v wm v w o 5 5 5 5 5 5 5 5 5 wa 109
3.3.3 Finding Patternsin Text 111
3.3.4 Exercises for Section 3.3 113

3.4 Algebraic Laws for Regular Expressions 114
3.4.1 Associativity and Commutativity 114
3.4.2 Identities and Annihilators 115
3.4.3 Distributive Laws L0000 0000 115
3.44 The Idempotent Law 116
3.4.5 Laws Involving Closures 117
3.4.6 Discovering Laws for Regular Expressions 117
3.4.7 The Test for a Regular-Expression Algebraic Law 119
3.4.8 Exercises for Section 3.4o 120

3.5 Summary of Chapter 3 122

3.6 References for Chapter 3 122

4 Properties of Regular Languages 125

4.1 Proving Languages not to be Regular. 126
4.1.1 The Pumping Lemma for Regular Languages 126
4.1.2 Applications of the Pumping Lemma 127
4.1.3 Exercises for Section 4.1 oL 129

4.2 Closure Properties of Regular Languages 131
4.2.1 Closure of Regula‘r Languages Under Boolean Operations 131
422 Reversal 137
4.2.3 Homomorphisms B e o o 139
4.24 Inverse Homomorphisms 140
4.2.5 Exercises for Section 4.2 145

4.3 Decision Properties of Regular Languages 149
4.3.1 Converting Among Representations 149
4.3.2 Testing Emptiness of Regular Languages 151
4.3.3 Testing Membership in a Regular Language 153
4.3.4 Exercises for Section 4.3 153

4.4 Equivalence and Minimization of Automata 154
4.4.1 Testing Equivalence of States 154
4.4.2 Testing Equivalence of Regular Languages 157
4.4.3 Minimization of DFA’s 159
4.4.4 Why the Minimized DFA Can’t Be Beaten 162
4.4.5 Exercises for Section 4.4 164

4.5 Summary of Chapter 4 L. 165

4.6 References for Chapter 4 166

X TABLE OF CONTENTS
5 Context-Free Grammars and Languages 169
5.1 Context-Free Grammars 169
5.1.1 An Informal Example 170
5.1.2 Definition of Context-Free Grammars 171
5.1.3 Derivations Using a Grammar 173
5.1.4 Leftmost and Rightmost Derivations 175
5.1.5 The Language of a Grammar 177
5.1.6 Sentential Forms 178
5.1.7 Exercises for Section 5.1 179

52 ParseTrees 181
5.2.1 Constructing Parse Trees 181
5.2.2 The Yield of a Parse Tree 183
5.2.3 Inference, Derivations, and Parse Trees 184
5.2.4 From Inferences to Trees 185
5.2.5 From Trees to Derivations 187
5.2.6 From Derivations to Recursive Inferences 190
5.2.7 Exercises for Section 5.2 191

5.3 Applications of Context-Free Grammars 191
5.3.1 Parsers e 192
5.3.2 The YACC Parser-Generator 194
5.3.3 Markup Languages 196
5.3.4 XML and Document-Type Definitions 198
5.3.5 Exercises for Section 5.3 204

5.4 Ambiguity in Grammars and Languages 205
5.4.1 Ambiguous Grammars L 205
5.4.2 Removing Ambiguity From Grammars 207
5.4.3 Leftmost Derivations as a Way to Express Ambiguity . . 211
5.4.4 Inherent Ambiguity 212
5.4.5 Exercises for Section 5.4 214

5.5 Summary of Chapter 5 215
5.6 References for Chapter 5. 216
6 Pushdown Automata 219
6.1 Definition of the Pushdown Automaton 219
6.1.1 Informal Introduction 219
6.1.2 The Formal Definition of Pushdown Automata 221
6.1.3 A Graphical Notation for PDA’s 223
6.1.4 Instantaneous Descriptions of a PDA 224
6.1.5 Exercises for Section 6.1 228

6.2 The Languages of a PDA 229
6.2.1 Acceptance by Final State 229
6.2.2 Acceptance by Empty Stack 230
6.2.3 From Empty Stack to Final State 231
6.2.4 From Final State to Empty Stack 234

6.2.5 Exercises for Section 6.2 236

TABLE OF CONTENTS xi

6.3 Equivalence of PDA’s and CFG’s 237
6.3.1 From Grammars to Pushdown Automata 237
6.3.2 From PDA’s to Grammars. 241
6.3.3 Exercises for Section 6.3 L. 245

6.4 Deterministic Pushdown Automata 246
6.4.1 Definition of a Deterministic PDA 247
6.4.2 Regular Languages and Deterministic PDA’s 247
6.4.3 DPDA’s and Context-Free Languages 249
6.4.4 DPDA’s and Ambiguous Grammars 249
6.4.5 Exercises for Section 6.4 oL 251

6.5 Summary of Chapter 6 252

6.6 References for Chapter 6 253

7 Properties of Context-Free Languages 255

7.1 Normal Forms for Context-Free Grammars 255
7.1.1 Eliminating Useless Symbols 256
7.1.2 Computing the Generating and Reachable Symbols 258
7.1.3 Eliminating e-Productions 259
7.1.4 Eliminating Unit Productions 262
7.1.5 Chomsky Normal Form 266
7.1.6 Exercises for Section 7.1 269

7.2 The Pumping Lemma for Context-Free Languages 274
7.2.1 The Size of Parse Trees 274
7.2.2 Statement of the Pumping Lemma 275
7.2.3 Applications of the Pumping Lemma for CFL's 276
7.2.4 Exercises for Section 7.2 280

7.3 Closure Properties of Context-Free Languages., 281
7.3.1 Substitutions 282
7.3.2 Applications of the Substitution Theorem 284
733 Reversalo 285
7.3.4 Intersection With a Regular Language 285
7.3.5 Inverse Homomorphism 289
7.3.6 Exercises for Section 7.3 291

7.4 Decision Properties of CFL’s 293
7.4.1 Complexity of Converting Among CFG’s and PDA’s . . . 294
7.4.2 Running Time of Conversion to Chomsky Normal Form . 295
7.4.3 Testing Emptinessof CFL’s 296
744 Testing Membershipina CFL 298
7.4.5 Preview of Undecidable CFL Problems 302
7.4.6 Exercises for Section 7.4 302

7.5 Summary of Chapter 7. 303

7.6 References for Chapter 7., 304

xii TABLE OF CONTENTS
8 Introduction to Turing Machines 307
8.1 Problems That Computers Cannot Solve 307
8.1.1 Programs that Print “Hello, World” 308
8.1.2 The Hypothetical “Hello, World” Tester 310
8.1.3 Reducing One Problem to Another 313
8.1.4 Exercises for Section 8.1 316
8.2 The Turing Machine 316
8.2.1 The Quest to Decide All Mathematical Questions 317
8.2.2 Notation for the Turing Machine 318
8.2.3 Instantaneous Descriptions for Turing Machines 320
8.2.4 Transition Diagrams for Turing Machines 323
8.2.5 The Language of a Turing Machine 326
8.2.6 Turing Machines and Halting 327
8.2.7 Exercises for Section 8.2 328
8.3 Programming Techniques for Turing Machines 329
8.3.1 Storagein the State 330
8.3.2 Multiple Tracks 331
8.3.3 Subroutines 333
8.3.4 Exercises for Section 83 334
8.4 Extensions to the Basic Turing Machine 336
8.4.1 Multitape Turing Machines 336
8.4.2 Equivalence of One-Tape and Multitape TM’s 337
8.4.3 Running Time and the Many-Tapes-to-One Construction 339
8.4.4 Nondeterministic Turing Machines 340
8.4.5 Exercises for Section 8.4 342
8.5 Restricted Turing Machines 345
8.5.1 Turing Machines With Semi-infinite Tapes 345
8.5.2 Multistack Machines 348
8.5.3 Counter Machines 351
8.5.4 The Power of Counter Machines 352
8.5.5 Exercises for Section 85 354
8.6 Turing Machines and Computers 355
8.6.1 Simulating a Turing Machine by Computer 355
8.6.2 Simulating a Computer by a Turing Machine 356
8.6.3 Comparing the Running Times of Computers and Turing
Machines 361
8.7 Summary of Chapter 8 oL 363
8.8 References for Chapter 8 365
9 Undecidability 367
9.1 A Language That Is Not Recursively Enumerable 368
9.1.1 Enumerating the Binary Strings 369
9.1.2 Codes for Turing Machines 369
9.1.3 The Diagonalization Language 370

9.1.4 Proof that L, is not Recursively Enumerable 372

TABLE OF CONTENTS

9.1.5 Exercises for Section 9.1
9.2 An Undecidable Problem ThatisRE
9.2.1 Recursive Languages
9.2.2 Complements of Recursive and RE languages
9.2.3 The Universal Language
9.2.4 Undecidability of the Universal Language
9.2.5 Exercises for Section 9.2
9.3 Undecidable Problems About Turing Machines
9.3.1 Reductions . . . : « ¢ ¢ s s sn som s ww mwws w5 d 5 8
9.3.2 Turing Machines That Accept the Empty Language
9.3.3 Rice’s Theorem and Properties of the RE Languages . . .
9.3.4 Problems about Turing-Machine Specifications
9.3.5 Exercises for Section 9.3
9.4 Post’s Correspondence Problem
9.4.1 Definition of Post’s Correspondence Problem
9.4.2 The “Modified” PCP.
9.4.3 Completion of the Proof of PCP Undecidability
9.4.4 Exercises for Section 9.4,
9.5 Other Undecidable Problems
9.5.1 Problems About Programs
9.5.2 Undecidability of Ambiguity for CFG’s
9.5.3 The Complement of a List Language
9.5.4 Exercises for Section 9.5
9.6 Summary of Chapter 9

9.7 References for Chapter 9 ‘

10 Intractable Problems

10.1 The Classes P and NP i i i i i
10.1.1 Problems Solvable in Polynomial Time
10.1.2 An Example: Kruskal’s Algorithm
10.1.3 Nondeterministic Polynomial Time
10.1.4 An NP Example: The Traveling Salesman Problem
10.1.5 Polynomial-Time Reductions
10.1.6 NP-Complete Problems
10.1.7 Exercises for Section 10.1

10.2 An NP-Complete Problem
10.2.1 The Satisfiability Problem
10.2.2 Representing SAT Instances
10.2.3 NP-Completeness of the SAT Problem
10.2.4 Exercises for Section 10.2

10.3 A Restricted Satisfiability Problem
10.3.1 Normal Forms for Boolean Expressions.
10.3.2 Converting Expressions to CNF
10.3.3 NP-Completeness of CSAT
10.3.4 NP-Completeness of 3SAT
10.3.5 Exercises for Section 10.3

xiv TABLE OF CONTENTS

10.4 Additional NP-Complete Problems 447
10.4.1 Describing NP-complete Problems 447
10.4.2 The Problem of Independent Sets 448
10.4.3 The Node-Cover Problem 452
10.4.4 The Directed Hamilton-Circuit Problem 453
10.4.5 Undirected Hamilton Circuits and the TSP 460
10.4.6 Summary of NP-Complete Problems 461
10.4.7 Exercises for Section 10.4 462

10.5 Summary of Chapter 10 466

10.6 References for Chapter 10 467

11 Additional Classes of Problems 469

11.1 Complements of Languages in NP 470
11.1.1 The Class of Languages Co-NP 470
11.1.2 NP-Complete Problems and Co-NP 471
11.1.3 Exercises for Section 11.1 472

11.2 Problems Solvable in Polynomial Space 473
11.2.1 Polynomial-Space Turing Machines 473
11.2.2 Relationship of PS and N'PS to Previously Defined Classes474
11.2.3 Deterministic and Nondeterministic Polynomial Space . . 476

11.3 A Problem That Is Complete for PS 478
11.3.1 PS-Completeness 478
11.3.2 Quantified Boolean Formulas 479
11.3.3 Evaluating Quantified Boolean Formulas 480
11.3.4 PS-Completeness of the QBF Problem 482
11.3.5 Exercises for Section 11.3 487

11.4 Language Classes Based on Randomization 487
11.4.1 Quicksort: an Example of a Randomized Algorithm . . . 488
11.4.2 A Turing-Machine Model Using Randomization 489
11.4.3 The Language of a Randomized Turing Machine 490
11.4.4 The Class RP . . . o v v v i it e e e 492
11.4.5 Recognizing Languagesin RP 494
11.4.6 The Class ZPP . . v oo v v e it e e e e e 495
11.4.7 Relationship Between RP and ZPP 496
11.4.8 Relationships to the Classes P and NP 497

11.5 The Complexity of Primality Testing 498
11.5.1 The Importance of Testing Primality 499
11.5.2 Introduction to Modular Arithmetic 501
11.5.3 The Complexity of Modular-Arithmetic Computations . . 503
11.5.4 Random-Polynomial Primality Testing 504
11.5.5 Nondeterministic Primality Tests 505
11.5.6 Exercises for Section 11.5 508

11.6 Summary of Chapter 11 508

11.7 References for Chapter 11 510

Index 513

Chapter 1

Automata: The Methods
and the Madness

Automata theory is the study of abstract computing devices, or “machines.”
Before there were computers, in the 1930’s, A. Turing studied an abstract ma-
chine that had all the capabilities of today’s computers, at least as far as in
what they could compute. Turing’s goal was to describe precisely the boundary
between what a computing machine could do and what it could not do; his
conclusions apply not only to his abstract Turing machines, but to today’s real
machines.

In the 1940’s and 1950’s, simpler kinds of machines, which we today call
“finite automata,” were studied by a number of researchers. These automata,
originally proposed to model brain function, turned out to be extremely useful
for a variety of other purposes, which we shall mention in Section 1.1. Also in
the late 1950’s, the linguist N. Chomsky began the study of formal “grammars.”
While not strictly machines, these grammars have close relationships to abstract
automata and serve today as the basis of some important software components,
including parts of compilers.

In 1969, S. Cook extended Turing’s study of what could and what could
not be computed. Cook was able to separate those problems that can be solved
efficiently by computer from those problems that can in principle be solved, but
in practice take so much time that computers are useless for all but very small
instances of the problem. The latter class of problems is called “intractable,”
or “NP-hard.” It is highly unlikely that even the exponential improvement in
computing speed that computer hardware has been following (“Moore’s Law”)
will have significant impact on our ability to solve large instances of intractable
problems.

All of these theoretical developments bear directly on what computer scien-
tists do today. Some of the concepts, like finite automata and certain kinds of
formal grammars, are used in the design and construction of important kinds
of software. Other concepts, like the Turing machine, help us understand what

2 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

we can expect from our software. Especially, the theory of intractable problems
lets us deduce whether we are likely to be able to meet a problem “head-on”
and write a program to solve it (because it is not in the intractable class), or
whether we have to find some way to work around the intractable problem:
find an approximation, use a heuristic, or use some other method to limit the
amount of time the program will spend solving the problem.

In this introductory chapter, we begin with a very high-level view of what
automata theory is about, and what its uses are. Much of the chapter is de-
voted to a survey of proof techniques and tricks for discovering proofs. We cover
deductive proofs, reformulating statements, proofs by contradiction, proofs by
induction, and other important concepts. A final section introduces the con-
cepts that pervade automata theory: alphabets, strings, and languages.

1.1 Why Study Automata Theory?

There are several reasons why the study of automata and complexity is an
important part of the core of Computer Science. This section serves to introduce
the reader to the principal motivation and also outlines the major topics covered
in this book.

1.1.1 Introduction to Finite Automata

Finite automata are a useful model for many important kinds of hardware and
software. We shall see, starting in Chapter 2, examples of how the concepts are
used. For the moment, let us just list some of the most important kinds:

1. Software for designing and checking the behavior of digital circuits.

2. The “lexical analyzer” of a typical compiler, that is, the compiler com-
ponent that breaks the input text into logical units, such as identifiers,
keywords, and punctuation.

3. Software for scanning large bodies of text, such as collections of Web
pages, to find occurrences of words, phrases, or other patterns.

4. Software for verifying systems of all types that have a finite number of
distinet states, such as communications protocols or protocols for secure
exchange of information.

While we shall soon meet a precise definition of automata of various types,
let us begin our informal introduction with a sketch of what a finite automaton
is and does. There are many systems or components, such as those enumerated
above, that may be viewed as being at all times in one of a finite number
of “states.” The purpose of a state is to remember the relevant portion of the
system’s history. Since there are only a finite number of states, the entire history
generally cannot be remembered, so the system must be designed carefully, to

1.1. WHY STUDY AUTOMATA THEORY? 3

remember what is important and forget what is not. The advantage of having
only a finite number of states is that we can implement the system with a fixed
set of resources. For example, we could implement it in hardware as a circuit, or
as a simple form of program that can make decisions looking only at a limited
amount of data or using the position in the code itself to make the decision.

Example 1.1: Perhaps the simplest nontrivial finite automaton is an on/off
switch. The device remembers whether it is in the “on” state or the “off” state,
and it allows the user to press a button whose effect is different, depending on
the state of the switch. That is, if the switch is in the off state, then pressing
the button changes it to the on state, and if the switch is in the on state, then
pressing the same button turns it to the off state.

Push

) ()

Push
Figure 1.1: A finite automaton modeling an on/off switch

The finite-automaton model for the switch is shown in Fig. 1.1. As for all
finite automata, the states are represented by circles; in this example, we have
named the states on and off. Arcs between states are labeled by “inputs,” which
represent external influences on the system. Here, both arcs are labeled by the
input Push, which represents a user pushing the button. The intent of the two
arcs is that whichever state the system is in, when the Push input is received
it goes to the other state.

One of the states is designated the “start state,” the state in which the
system is placed initially. In our example, the start state is off, and we conven-
tionally indicate the start state by the word Start and an arrow leading to that
state.

It is often necessary to indicate one or more states as “final” or “accepting”
states. Entering one of these states after a sequence of inputs indicates that
the input sequence is good in some way. For instance, we could have regarded
the state on in Fig. 1.1 as accepting, because in that state, the device being
controlled by the switch will operate. It is conventional to designate accepting
states by a double circle, although we have not made any such designation in
Fig. 1.1. O

Example 1.2: Sometimes, what is remembered by a state can be much more
complex than an on/off choice. Figure 1.2 shows another finite automaton that
could be part of a lexical analyzer. The job of this automaton is to recognize

