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Foreword

In this book, Nesterov and Nemirovskii describe the first unified theory of
polynomial-time interior-point methods. Their approach provides a simple and
elegant framework in which all known polynomial-time interior-point methods
can be explained and analyzed. Perhaps more important for applications, their
approach yields polynomial-time interior-point methods for a very wide variety
of problems beyond the traditional linear and quadratic programs.

The book contains new and important results in the general theory of con-
vex programming, e.g., their “conic” problem formulation in which duality
theory is completely symmetric. For each algorithm described, the authors
carefully derive precise bounds on the computational effort required to solve
a given family of problems to a given precision. In several cases they obtain
better problem complexity estimates than were previously known.

The detailed proofs and lack of “numerical examples” might suggest that
the book is of limited value to the reader interested in the practical aspects
of convex optimization, but nothing could be further from the truth. An
entire chapter is devoted to potential reduction methods precisely because of
their great efficiency in practice (indeed, some of these algorithms are worse
than path-following methods from the complexity theorist’s point of view).
Although it is not reported in this book, several of the new algorithms described
(e.g., the projective method) have been implemented, tested on “real world”
problems, and found to be extremely efficient in practice.

Nesterov and Nemirovskii’s work has profound implications for the appli-
cations of convex programming. In many fields of engineering we find con-
vex problems that are not linear or quadratic programs, but are of the form
readily handled by their methods. For example, convex problems involving
matrix inequalities arise in control system engineering. Before Nesterov and
Nemirovskii’s work, we could observe that such problems can be solved in
polynomial time (by, e.g., the ellipsoid method) and therefore are, at least in
a theoretical sense, tractable. The methods described in this book make these
problems tractable in practice.

Karmakar’s contribution was to demonstrate the first algorithm that solves
linear programs in polynomial time and with practical efficiency. Similarly, it
is one of Nesterov and Nemirovskii’s contributions to describe algorithms that
solve, in polynomial time and with practical efficiency, an extremely wide class
of convex problems beyond linear and quadratic programs.

Stephen Boyd Stanford, Cualifornia
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Preface

The purpose of this book is to present the general theory of interior-point
polynomial-time methods for convex programming. Since the publication of
Karmarkar’s famous paper in 1984, the area has been intensively developed
by many researchers, who have focused on linear and quadratic programming.
This monograph has given us the opportunity to present in one volume all of
the major theoretical contributions to the theory of complexity for interior-
point methods in optimization. Our aim is to demonstrate that all known
polynomial-time interior-point methods can be explained on the basis of gen-
eral theory, which allows these methods to extend into a wide variety of non-
linear convex problems. We also have presented for the first time a definition
and analysis of the self-concordant barrier function for a compact convex body.

The abilities of the theory are demonstrated by developing new polynomial-
time interior-point methods for many important classes of problems: quadrat-
ically constrained quadratic programming, geometrical programming, approx-
imation in L, norms, finding extremal ellipsoids, and solving problems in
structural design. Problems of special interest covered by the approach are
those with positive semidefinite matrices as variables. These problems include
numerous applications in modern control theory, combinatorial optimization,
graph theory, and computer science.

This book has been written for those interested in optimization in gen-
eral, including theory, algorithms, and applications. Mathematicians working
in numerical analysis and control theory will be interested, as will computer
scientists who are developing theory for computation of solutions of problems
by digital computers. We hope that mechanical and electrical engineers who
solve convex optimization problems will find this a useful reference.

Explicit algorithms for the aforementioned problems, along with detailed
theoretical complexity analysis, form the main contents of this book. We hope
that the theory presented herein will lead to additional significant applications.
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Chapter 1
Introduction

1.1 Subject

The introduction of polynomial-time interior-point methods is one of the most
remarkable events in the development of mathematical programming in the
1980s. The first method of this family was suggested for linear programming in
the landmark paper of Karmarkar (see [Ka 84]). An excellent complexity result
of this paper, as well as the claim that the performance of the new method on
real-world problems is significantly better than the one of the simplex method,
made this work a sensation and subsequently inspired very intensive and fruit-
ful studies.

Until now, the activity in the field of interior-point methods focuses mainly
on linear programming. At the same time, we find that the nature of the
methods, is in fact, independent of the specific properties of LP problems, so
that these methods can be extended onto more general convex programs. The
aim of this book is twofold:

e To present a general approach to the design of polynomial-time interior-
point methods for nonlinear canvex problems, and

o To illustrate the abilities of the approach by a number of important ex-
amples (quadratically constrained quadratic programming, geometrical
programming, approximation in L, norm, minimization of eigenvalues,
among others).

1.2 Essence of the approach

After the seminal paper of Renegar (see [Re 86]), it became absolutely clear
that the new polynomial-time algorithms belong to the traditional class of
interior penalty methods studied in the classical monograph of Fiacco and
McCormick (see [FMcC 68]). To solve a convex problem

(H minimize fo(z) s.t. fi(z) <0, i=1,..,m(f), r € R™Y)

by an interior penalty method, it is first necessary to form a barrier function
for the feasible domain

Gr={z| fil2) <O, i=1,..,m())}

1



2 INTRODUCTION

of the problem, i.e., smooth and strongly convex on the interior of the domain
function F tending to infinity along each sequence of interior points converg-
ing to a boundary point of Gy. Given such a barrier, one approximates the
constrained problem (f) by the family of unconstrained problems, e.g., by the
barrier-generated family

(fe) | minimize fi(z) = tfo(z) + F(z),

where ¢ > 0 is the penalty parameter. Under extremely mild restrictions, the
solutions z(t) to (f;) tend to the optimal set of (f) as ¢ tends to co. The
classical scheme suggests following the trajectory z(t) along certain sequence
t; — oo of values of the penalty. By applying to (f;) a method for uncon-
strained minimization, one forms “tight” approximations to z(¢;), and these
approximations are regarded as approximate solutions to (f). This scheme
leads to barrier methods.

Another “unconstrained approximation” of the constrained problem (f) is
given by the family

(ff) ~ minimize f(z) = ¢(t — fo(z)) + F(2),

where t > f* (f* is the optimal value in (f)) and ¢ is a barrier for the nonneg-
ative half-axis. Ast — f* + 0, the solutions z°(t) to the problems (ff) tend
to the optimal set of (f), and one can follow the path 2°(t) along a sequence
t; — f* + 0 by applying to (ff) a method for unconstrained minimization.
The latter scheme originating from Huard (see, e.g., [BH 66]) leads to what is
called methods of centers.

Note that the above schemes possess two main “degrees of freedom”: First,
it is possible to use various barriers; second, one can implement any method
for unconstrained minimization. Regarding the first issue, the classical recom-
mendation, at least in the case of smooth convex constraints, is to use barriers
that are compositions of constraints,

m(f)
F(z) = Y (- fi(e)),
=1

where 9(s) is a barrier for the nonnegative half-axis, e.g.,
Y(8)=s8"", K>0 ¢Y(s) = —klns, k>0 Y(s) =el/*, ete.

Regarding choice of the method for unconstrained minimization, there were
almost no firm theoretical priorities; the computational experience was in fa-
vor of the Newton method, but this recommendation had no theoretical back-
ground.

Such a background was first given by Renegar in [Re 86]. Renegar demon-
strated that in the case of a linear programming problem (f) (all f;, ¢ =



ESSENCE OF THE APPROACH 3

1,...,m(f), are linear), the method of centers associated with the standard
logarithmic barrier

m
F(z) = - _In(~fi(x))
i=1
for the feasible polytope G of the problem and with
#(s) = —wln(s), w>0

allows us to decrease the residual t; — f* at a linear rate at the cost of a single
step of the Newton method as applied to (ff). Under appropriate choice of
the weight w at the term In(t — fo(z)) (namely, w = O(m(f))), one can force
the residual ¢; — f* to decrease as exp{—0(1)i/m/2(f)}. Thus, to improve the
accuracy of the current approximate solution by an absolute constant factor, it
suffices to perform O(m!/2(f)) Newton steps, which requires a polynomial in
the size (n(f), m(f)) of the problem number of arithmetic operations; in other
words, the method proves to be polynomial. Similar results for the barrier
method associated with the same logarithmic barrier for a linear programming
problem were established by Gonzaga [Go 87].

We see that the central role in the modern interior-point methods for linear
programming is played by the standard logarithmic barrier for the feasible
polytope of the problem. To extend the methods onto nonlinear problems, one
should understand the properties of the barrier responsible for polynomiality
of the associated interior-point methods. Our general approach originates in
[Ns 88b], [Ns 88c]|, [Ns 89]. It is as follows: Among all various properties of
the logarithmic barrier, only two are responsible for all nice features of the
associated with F interior-point methods. These two properties are (i) the
Lipschitz continuity of the Hessian F" of the barrier with respect to the local
Euclidean metric defined by the Hessian itself as

|D3F(z)[h, h, h]| < consty {D*F(x)[h, h]}3/?

for all z from the interior of G and all h € R™; and (ii) the Lipschitz continuity
of the barrier itself with respect to the same local Euclidean structure

|DF(z)[h]| < consty{ D*F(z)[h, h]}/2

for the same as above = and h.

Now (i) and (ii) do not explicitly involve the polyhedral structure of the
feasible domain G of the problem; given an arbitrary closed convex domain G,
we can consider a interior penalty function for G with these properties (such
a function will be called a self-concordant barrier for G). The essence of the
theory is that, given a self-concordant barrier F for a closed convex domain G,
we can associate with this barrier interior point methods for minimizing linear
objectives over G in the same way as is done in the case of the standard log-
arithmic barrier for a polytope. Moreover, all polynomial-time interior-point
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methods known for LP admit the above extension. To improve the accuracy
of a given approximate solution by an absolute constant factor, the resulting
methods require the amount of steps that depends only on the parameter of
the barrier, i.e., on certain combination of the above const; and consts, while
each of the steps is basically a step of the Newton minimization method as
applied to F'.

Note that the problem of minimizing a linear objective over a closed convex
domain is universal for convex programming: Each convex program can be re-
formulated in this form. It follows that the possibility to solve convex programs
with the aid of interior-point methods is limited only by our ability to point
out self-concordant barriers for the resulting feasible domains. The result is
that such a barrier always exists (with the parameter being absolute constant
times the dimension of the domain); unfortunately, to obtain nice complexity
results, we need a barrier with moderate arithmetic cost of computing the gra-
dient and the Hessian, which is not always the case. Nevertheless, in many
cases we can to point out “computable” self-concordant barriers, so that we
can develop efficient methods for a wide variety of nonlinear convex problems
of an appropriate analytical structure.

Thus, we see that there exist not only heuristic, but also theoretical reasons
for implementing the Newton minimization method in the classical schemes of
the barrier method and the method of centers. Moreover, we understand how
to use the freedom in choice of the barrier: It should be self-concordant, and
we are interested in this intrinsic property, in contrast to the traditional rec-
ommendations where we are offered a number of possibilities for constructing
the barrier but have no priorities for choosing one of them.

1.3 Motivation

In our opinion, the main advantage of interior-point machinery is that, in many
important cases, it allows us to utilize the knowledge of the analytical structure
of the problem under consideration to develop an efficient algorithm. Consider
a family A of solvable optimization problems of the type (f) with convex finite
(say, on the whole R™/)) objective and constraints.

Assume that we have fixed analytical structure of the functionals involved
into our problems, so that each problem instance (f) belonging to A can be
identified by a finite-dimensional real vector D(f) (“the set of coefficients of
the instance”). Typical examples here are the classes of linear programming
problems, linearly/quadratically constrained convex quadratic problems, and
so forth. Assume that, when solving (f), the set of data D(f) form the input
to the algorithm, and we desire to solve (f) to a prescribed accuracy &, i.e., to
find an approximate solution z. satisfying the relations

fO(xE)Sf*+€7 fi(wE)SE’ z=1,,m(f),

where f* is the optimal value in (f).
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An algorithm that transforms the input (D(f), ) into an e-solution to (f)
in a finite number of operations of precise real arithmetic will be called poly-
nomial, if the total amount of these operations for all (f) € 4 and all £ > 0
is bounded from above by p(m(f), n(f),dim{D(f)}) In(V(f)/e), where p is a
polynomial. Here V(f) is certain scale parameter, which can depend on the
magnitudes of coefficients involved into (f) (a reasonable choice of the pa-
rameter is specific for the family under consideration). The ratio €/V(f) can
be regarded as the relative accuracy, so that In(V(f)/¢) is something like the
amount of accuracy digits in an e-solution. Thus, a polynomial-time algorithm
is a procedure in which the arithmetic cost “per accuracy digit” does not ex-
ceed a polynomial of the problem size (m(f), n(f), dim{D(f)}). Polynomiality
usually is treated as theoretical equivalent to the unformal notion “an effective
computational procedure,” and the efficiency of a. polynomial-time algorithm,
from the theoretical viewpoint, is defined by the corresponding “cost per digit”
p(m(f),n(f),dim{D(f)}).

The concept of a polynomial-time algorithm was introduced by Edmonds
[Ed 65] and Cobham [Co 65] (see also Aho et al. [AHU 76|, Garey and Johnson
[GJ 79], and Karp [Kr 72|, [Kr 75]). This initial concept was oriented onto
discrete problems; in the case of continuous problems with real data, it seems
to be more convenient to deal with the above (relaxed) version of this concept.

Note that polynomial-time algorithms do exist in a sense, for “all” convex
problems. Indeed, there are procedures (e.g., the ellipsoid method; see [NY 79])
that solve all convex problems ( f) to relative (in a reasonable scale) accuracy €
at the cost of O(p(n, m)In(n/e)) arithmetic operations and O(g(n, m) In(n/¢))
computations of the values and subgradients of the objective and the con-
straints, where p and ¢ are polynomials (for the ellipsoid method, p(n,m) =
n3(m + n), q(n,m) = n%). Now, if our class of problems A is such that,
given the data D(f), we can compute the above values and subgradients at a
given point = in polynomial in m(f), n(f), dim{D(f)} number of arithmetic
operations, then the above procedure proves to be polynomial on A.

A conceptual drawback of the latter scheme is that, although from the
very beginning we possess complete information about the problem instance,
we make only “local” conclusions from this “global” information; in fact, in
this scheme, we ignore our knowledge of the analytical structure of the prob-
lem under consideration (more accurately, this information is used only when
computing the values and the subgradients of f;). At the same time, the
interior-point machinery is now the only known way to utilize the knowledge
of analytical structure to improve—sometimes significantly—the theoretical
efficiency of polynomial-time algorithms. Indeed, as already mentioned, the
efficiency of a polynomial-time interior-point method is defined first by the pa-
rameter of the underlying barrier and second by the arithmetic cost at which
one can form and solve the corresponding Newton systems; both these quan-
tities depend more on the analytical structure of the objective and constraints
than on the dimensions m(f) and n(f) of the problem.
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1.4 Overview of the contents

Chapter 2 forms the technical basis of the book. Here we introduce and study
our main notions of self-concordant functions and barriers.

Chapter 3 is devoted to the path-following interior-point methods. In their
basic form, these methods allow us to minimize a linear objective f over a
bounded closed convex domain G, provided that we are given a self-concordant
barrier for the domain and a starting point belonging to the interior of the
domain. In a path-following method, the barrier and the objective generate
certain penalty-type family of functions and, consequently, the trajectory of
minimizers of these functions; this trajectory converges to the optimal set of
the problem. The idea of the method is to follow this path of minimizers:
Given a strictly feasible approximate solution close, in a sense, to the point of
the path corresponding to a current value of the penalty parameter, we vary
the parameter in the desired direction and then compute the Newton iterate
of the current approximate solution to restore the initial closeness between
the updated approximate solution and the new point of the path. Of course,
this scheme is quite traditional, and, generally speaking, it does not result in
polynomial-time procedure. The latter feature is provided by self-concordance
of the functions comprising the family.

We demonstrate that path-following methods known for LP (i.e., for the
case when G is a polytope) can be easily explained and extended onto the case
of general convex domains G. We prove that the efficiency (“cost per digit”)
of these methods is O(9'/2), where 9 is the parameter of the barrier (for the
standard logarithmic barrier for an m-facet polytope one has 4 = m).

In Chapter 4 we extend onto the general convex case the potential reduction
interior-point methods for LP problems; we mean the method of Karmarkar
[Ka 84], the projective method [Nm 87|, the primal-dual method of Todd and
Ye [TY 87], and Ye [Ye 88a], [Ye 89]. The efficiency of the resulting method
is O(9) (for the generalized method of Karmarkar and the projective method)
or O(9'/2) (the generalized primal-dual method), where ¥ denotes the param-
eter of the underlying self-concordant barrier. Thus, the potential reduction
methods, theoretically, have no advantages as compared to the path-following
algorithms. From the computational viewpoint, however, these methods are
much more attractive. The reason is that, for a potential reduction method,
one can point out an explicit Lyapunov’s function, and the accuracy of a fea-
sible approximate solution can be expressed in terms of the potential (the less
the potential, the better the approximate solution). At each strictly feasible
solution, the theory prescribes a direction and a stepsize, which allows us to
obtain a new strictly feasible solution with the value of the potential being
“considerably” less than that at the previous approximate solution. To ensure
the theoretical efficiency estimate, it suffices to perform this theoretical step,
but we are not forbidden to achieve a deeper decreasing of the potential, say,
with the aid of one-dimensional minimization of the potential in the direction
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prescribed by the theory. In real-world problems, these “large steps” signifi-
cantly accelerate the method. In contrast to this, in a path-following method,
we should maintain closeness to the corresponding trajectory, which, at least
theoretically, is an obstacle for “large steps.”

To extend potential reduction interior-point methods onto the general con-
vex case, we use a special reformulation of a convex programming problem, the
so-called conic setting of it (where we should minimize a linear functional over
the intersection of an affine subspace and a closed convex cone). An important
role in the extension is played by duality, which for conic problems attains
very symmetric form and looks quite similar to the usual LP duality. Another
advantage of the “conic format” of convex programs, which is especially im-
portant to the design of polynomial-time methods, is that this format allows us
to exploit the widest group of transformations preserving convexity of feasible
domains; we mean the projective transformations (to subject a conic problem
to such a transformation is basically the same as to intersect the cone with
another affine subspace).

As already mentioned, to solve a convex problem by an interior-point
method, we should first reduce the problem to one of minimizing a linear
objective over convex domain (which is quite straightforward) and, second,
point out a “computable” self-concordant barrier for this domain (which is the
crucial point for the approach). As shown in Chapter 2, every n-dimensional
closed convex domain admits a self-concordant barrier with the parameter of
order of n; unfortunately, the corresponding “universal barrier” is given by a
multivariate integral and therefore cannot be treated as “computable.” Nev-
ertheless, the result is that there exists a kind of calculus of “computable”
self-concordant barriers, which forms the subject of Chapter 5. We first point
out “simple” self-concordant barriers for a number of standard domains aris-
ing in convex programming (epigraphs of standard functions on the axis, level
sets of convex quadratic forms, the epigraph of the Euclidean norm, the cone
of positive semidefinite matrices, and so forth). Second, we demonstrate that
all standard (preserving convexity) operations with convex domains (taking
images/inverse images under affine mappings and projective transformations,
intersection, taking direct products, and so forth) admit simple rules for com-
bining self-concordant barriers for the operands into a self-concordant barrier
for the resulting domain. This calculus involves “rational linear algebra” tools
only and, as applied to our “raw materials”—concrete self-concordant barriers
for “standard” convex sets—allows us to form “computable” self-concordant
barriers for a wide variety of convex domains arising in convex programming.

In Chapter 6 we illustrate the abilities of the developed technique. Namely,
we present polynomial-time interior-point algorithms for a number of classes of
nonlinear convex programs, including quadratically constrained quadratic pro-
gramming, geometrical programming (in exponential form), approximation in
Ly-norm, and minimization of the operator norm of a matrix linearly depend-
ing on the control vector. An especially interesting application is semidefinite
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programming, i.e., minimization of a linear functional of a symmetric matrix
subjected to positive semidefiniteness restriction and a number of linear equal-
ity constraints. Note that, first, semidefinite programming is a nice field for
interior-point methods (all path-following and potential reduction methods can
be easily implemented for this class); second, semidefinite programming cov-
ers many important problems arising in various areas, from control theory to
combinatorial optimization (e.g., the problem of minimizing the largest eigen-
value or the sum of k largest eigenvalues of a symmetric matrix). We conclude
Chapter 6 with developing polynomial-time interior-point algorithms for two
geometrical problems concerning extremal ellipsoids (the problems are to in-
scribe the maximum volume ellipsoid into a given polytope and to cover a given
finite set in R™ by the ellipsoid of minimum volume). The first of these is espe-
cially interesting for nonsmooth convex optimization (it arises as an auxiliary
problem in the inscribed ellipsoid method (see Khaciyan et al. [KhTE 88])).

Chapter 7 is devoted to variational inequalities with monotone operators.
Here we extend the notion of self-concordance onto monotone operators and
develop a polynomial-time path-following method for inequalities involving op-
erators “compaitible,” in a sense, with a self-concordant barrier for the feasible
domain of the inequality. Although the compatibility condition is a rather se-
vere restriction, it is automatically satisfied for linear monotone operators, as
well as for some interesting nonlinear operators (e.g., the operator arising, un-
der some natural assumptions, in the pure exchange model of Arrow-Debreu).

In Chapter 8 we consider possibilities for acceleration of the path-following
algorithms as applied to linearly constrained convex quadratic (in particular,
LP) problems. Until now, the only known acceleration strategies were more
or less straightforward modifications of the Karmarkar speed-up (see [Ka 84])
based on recursive updatings of approximate inverses to the matrices arising
at the sequential Newton-type steps of the procedure under consideration. We
describe four more strategies: Three are based on following the path with the
aid of (prescaled) multistep methods for smooth optimization; in the fourth
strategy, to find an approximate solution of a Newton system, we use the
prescaled conjugate gradient method. All our strategies lead to the same worst-
case complexity estimates as the known ones, but the new strategies seem to
be more flexible and therefore can be expected to be more efficient in practice.

We conclude the exposition with Bibliography Comments. It seems to
be impossible to give a detailed survey of the activity in the very intensively
developing area of polynomial-time interior-point methods. Therefore we have
restricted ourselves only with the papers closely related to the monograph.
We realize that the “level of completeness” of our comments is far from being
perfect and apologize in advance for possible lacunae.

The methods presented in the book are new, and we believe that they are
promising for practical computations. The very preliminary experience we now
possess supports this hope, but it in no sense is sufficient to make definite con-
clusions. Therefore our decision was to completely omit any numerical results.
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Of course, we realize that it is computational experience, not theoretical re-
sults alone, that proves practical potential of an algorithm, and we hope that,
by the methods presented in this book, this experience can soon be gained.

1.5 How to read this book -

Basically, there are two ways of reading this book, depending on whether
the reader is interested in the interior-point theory itself or its applications to
concrete optimization problems. The theoretical aspect is detailed in Chapters
2-5, while applications of variational inequalities, in addition to the theory, can
be found in Chapter 7 (it is possible to exclude Chapters 4 and 5 here). For
specific explications of the theory of linear and linearly constrained quadratic
programming, refer to Chapter 8.

Chapters 2 and 3 deal in general theory rather than in concrete applications;
the reader interested in applications is expected to be familiar with the main
concepts and results found there (with the exception of §2.5 and possible §2.4),
but not necessarily with the proofs. Note that, for some applications (e.g., ge-
ometrical programming, approximation in Ly-norm, and finding extremal el-
lipsoids), only path-following methods are developed, and, consequently, those
interested in these applications may move from chapter 3 directly to Chap-
ter 6. Quadratically constrained quadratic problems, especially semidefinite
programming with applications to control theory, can be found in §2.4 and
Chapter 4 (at the level of concepts and schemes). If one wishes to deal with
concrete applications that are not explicitly presented in this book and would
like to attempt to develop new interior-point methods, refer to Chapter 5 for
the techniques of constructing self-concordant barriers.



