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Preface

his book is for a first college-level geometry course and is suitable for mathematics
T majors and especially prospective high school teachers. Much of the content will
be familiar to geometry instructors: a solid introduction to axiomatic Euclidean ge-
ometry, some non-Euclidean geometry, and a substantial amount of transformation
geometry. However, we present some important novelties: We pay signiﬁcant attention
to applications, we provide optional dynamic geometry courseware for use with The
Geometer’s Sketchpad, and we include a chapter on polyhedra and planar maps. By extending
the content of geometry courses to include applications and newer geometry, such a
course can not only teach mathematical skills and understandings, but can help students
understand the twenty-first century world that is unfolding around us. By providing
software support for discovery learning, we allow experiments with new ways of teaching
and learning.

The intertwined saga of geometric theory and applications is modern as well as
ancient, providing a wonderful mathematical story that continues today. It is a com-
pelling story to present to students to show that mathematics is a seamless fabric,
stretching from antiquity until tomorrow and stretching from theory to practice. Con-
sequently, one of our goals is to express the breadth of geometric applications, especially
contemporary ones. Examples include symmetries of artistic patterns, physics, robotics,
computer vision, computer graphics, stability of architectural structures, molecular
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biology, medicine, pattern recognition, and more. Perhaps surprisingly, many of these
applications are based on familiar, long-standing geometric ideas — showing once again
that there is no conflict between the timelessness and modernity of good mathematics.

In recent years, high school instruction in geometry has become much less
extensive and much less rigorous in many school districts. Whatever advantage this
may bring at the high school level, it changes the way we need to instruct math-
ematics students at the college level. In the first place, it makes instruction in
geometry that much more imperative for all students of mathematics. In addition,
we cannot always assume extensive familiarity with proof-oriented basic Euclidean
geometry. Consequently, we begin at the beginning, displaying a portion of classical
Euclidean geometry as a deductive system. For the most part, our proofs are in the
style of Euclid— which is to say that they are not as rigorous as they could be. We
do present a snapshot of some geometry done with full rigor, so that students will
have exposure to that. In addition, there is a careful discussion of why full rigor is
important in some circumstances and why it is not always attempted in teaching,
research, or applications.

Except for Chapters 5 and 6 and parts of Chapter 7, this text requires little more than
high school mathematics. Nonetheless, students need the maturity to deal with proofs
and careful calculations. In Chapters 5 and 6 and parts of Chapter 7, we assume a
familiarity with vectors as commonly presented in multivariable calculus. Derivatives
also make a brief appearance in Chapter 5. Matrices are used in Chapter 6, but it is
not necessary to have studied linear algebra in order to understand this material.
All that we assume is that students know how to multiply matrices and are familiar
with the associative law.

It would be foolish to pretend that this book surveys all of the major topics and
applications of geometry. For example, differential geometry is represented only by
one short section. I have tried to choose topics that would be most appealing and
accessible to undergraduates, especially prospective high school teachers.

A good deal of flexibility is possible in selecting a sequence of topics from which to
create a course. This book contains two approaches to geometry: the axiomatic and the
computational. When I am teaching mostly prospective teachers, I emphasize the axi-
omatic (Chapters 1-4) and sprinkle in a little computational material from Chapters
5 or 6. When I have mainly mathematics majors with applied interests and others, such
as computer science majors, I reverse the emphasis, concentrating on Chapters 5, 6,
and 7. I find Chapter 8 works well in either type of course.

There is a lot of independence among the chapters of the book. For example, one
might skip Chapters 1 through 3 since there are only a few places in other chapters
(mainly Chapter 4) where there is any explicit dependence on them. An instructor
can remind students of the relevant theorems as the need arises. Chapter 4 is not needed
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for any of the other parts. Chapter 5 can be useful in preparation for Chapter 6 only
insofar as we often think of points as position vectors in Chapter 6. Chapter 7 relies
on one section of Chapter 2 and one section of Chapter 5. Chapter 8 is completely
independent of the other chapters. More detailed descriptions of prerequisites are given
at the start of each chapter.

In writing this book, I am aware of the many people and organizations that have
shaped my thoughts. I learned a good deal about applications of geometry at the
Grumman Corporation (now Northrop-Grumman) while in charge of a robotics
research program. Opportunities to teach this material at Adelphi University and during
a year spent as a visiting professor at the U.S. Military Academy at West Point have been
helpful. In particular, I thank my cadets and my students at Adelphi for finding errors
and suggesting improvements in earlier drafts. Thanks are due to the National Science
Foundation, the Sloan Foundation, and COMAP for involving me in programs dedicated
to the improvement of geometry at both the collegiate and secondary levels. Finally, I
wish to thank numerous individuals with whom I have been in contact (for many years
in some cases) about geometry in general and this book in particular: Joseph Malkevitch,
Donald Crowe, Robert Bumcrot, Andrew Gleason, Greg Lupton, John Oprea, Brigitte
Selvatius, Marie Vanisko, and Sol Garfunkel.

Prof. Walter Meyer
Adelphi University

Supplements for the Instructor
The following supplements are available from Academic Press:
1. Answers to the even-numbered exercises

2. Instructor’s guide to The Geometer’s Sketchpad explorations that are contained in the
disk that accompanies this text.
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Introduction

eometry is full of beautiful theorems, and its logical structure can be inspiring. As
G the poet Edna St. Vincent Millay wrote, “Euclid alone has looked on beauty bare.”
But beyond beauty and logic, geometry also contains important tools for applied
mathematics. This should be no surprise, since the word “geometry” means “earth
measurement” in Greek. As just one example, we will illustrate the appropriateness
of this name by showing how geometry was used by the ancient Greeks to measure
the circumference of the earth without actually going around it. But the story of geo-
metric applications is modern as well as ancient. The upsurge in science and technology
in the last few decades has brought with it an outpouring of new questions for
geometers. In this introduction we provide a sampler of the big ideas and important
applications that will be discussed in this book.'

Individuals often have preferences, either for applications in contrast to theory or
vice versa. This is unavoidable and understandable. But the premise of this book is
that, whatever our preferences may be, it is good to be aware of how the two faces
of geometry enrich each other. Applications can’t proceed without an underlying theory.
And theoretical ideas, although they can stand alone, often surprise us with unexpected

" This introduction also appears in Perspectives on the Teaching of Geometry for the 21st Century, ed. V. Villani and C.
Mammana, copyright Kluwer Academic Publishers b, 1998.
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applications. Throughout the history of mathematics, theory and applications have car-
ried out an intricate dance, sometimes dancing far apart, sometimes close. My hope
is that this book gives a balanced picture of the dance at this time, as we enter a

new millennium.

Of all the marvelous abilities we human beings possess, nothing is more impressive than
our visual systems. We have no trouble telling circles apart from squares, estimating sizes,
noticing when triangles appear congruent, and so on. Despite this, the earliest big idea in
geometry was to achieve truth by proof and not by eye. Was that really necessary or
useful? These ideas are explored in Chapters 1 and 2.

Creating a geometry based on proof required some basic truths — which are called
axioms in geometry. Axioms are supposed to be uncontroversial and obviously true, but
Euclid seemed nervous about his parallel axiom. Other geometers caught this whiff
of uncertainty and, about 2000 years later, some were bold enough to deny the parallel
axiom. In doing this they denied the evidence of their own eyes and the weight of
2000 years of tradition. In addition, they created a challenge for students of this so-called
“non-Euclidean geometry,” which asks them to accept axioms and theorems that seem to
contradict our everyday visual experience. According to our visual experience, these
non-Euclidean geometers are cranks and crackpots. But eventually they were promoted
to visionaries when physicists discovered that the far-away behavior of light rays (physical
examples of straight lines) is different from the close-to-home behavior our eyes observe.
Astronomers are working to make use of this non-Euclidean behavior of light rays to
search for “dark matter” and to foretell the fate of the universe. These revolutionary

ideas are explored in Chapter 3.

dity and Architecture

If you are reading this indoors, the building you are in undoubtedly has a skeleton of

either wooden or steel beams, and your safety depends partly on the rigidity of this
skeleton (see Figure LIb). Neither a single rectangle (Figure Lla), nor a grid of them,
would be rigid if it had hinges where the beams meet. Therefore, when we build
frameworks for buildings, we certainly dont put hinges at the corners—in fact, we
make these corners as strong as we can. But it is hard to make a corner perfectly rigid,
so every additional safeguard is welcome. A very common safeguard, which makes a
single rectangle rigid, is to add a diagonal brace. Perhaps surprisingly, if we have a grid
of many rectangles, it is not necessary to brace every rectangle. The braced grid in

<« xiii
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Figure 1.1 (a) A hinged rectangle flexing. (b) A braced grid that cannot flex even if totally hinged.

Figure L.1b turns out to be rigid even if every corner is hinged. In Section 2.3 of Chapter 2,
we work out a procedure for determining when a set of braces makes a grid of rectangles
rigid even though all corners are hinged.

puter Graphics

The impressionist painter Paul Signac (1863—1935) painted “The Dining Room” by putting
lots of tiny dots on a canvas (Figure1.2a). If you stand back the tiny dots blend together to
make a picture. This painting technique, called pointillism, was a sensation at the time, and
foreshadows modern image technology. For example, if you take a close look at your TV
screen, you'll see that the picture is composed of tiny dots of light. Likewise, a computer
screen creates a picture by “turning on” little patches of color called pixels. Think of them
as forming an array of very tiny light bulbs, arranged in rows and columns in the X-y
plane so that each point with integer coordinates is the center of a pixel (Figure I.2b).

When a graphics program shows a picture, how does it calculate which pixels to turn
on and what colors they should be? Here is a simple version of the problem: If we are
given two pixels (shaded in Figure I.2b) and want to connect them with a set of pixels
to give the impression of a blue straight line, which “in between” pixels should be turned
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The Dining Room
by Paul Signac

(2) (b)

Figure 1.2 Pixels in (a) art and (b) computer graphics. Courtesy of Metropolitan Museum of Art.

blue? Neither Signac nor you would have any problem with this, painting by eye,
but how can the computer do it by calculations based on the coordinates of the centers
of the start and end pixels? In this computer verison of the problem, the desired answer
is a list of pixel centers, each center specified by x and y coordinates. Chapter 1 gives you an
idea of how to create such a list.

metries in Anthropology

In studying vanished cultures, anthropologists often learn a great deal from the artistic

patterns these cultures produced. Figure 1.3 shows two patterns you might find on
a cloth or circling around a clay pot. Each of these patterns has some kind of symmetry.
But what kind? What do we mean by the word symmetry? Some would say the bottom
pattern has more symmetry than the top pattern. How can symmetry be measured?
The questions we pose here for patterns are similar to ones that arise, in three-dimensional
form, in the study of crystallography.

We study these questions in Chapter 4, with particular attention paid to the pottery
of the San Ildefonso pueblo in the southwestern United States.
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Figure 1.3 Two strip pattems.

Figure 1.4 shows a robot about to drill a hole. Perhaps the hole is being drilled into
someone’s skull in preparation for brain surgery, or maybe it’s part of the manufacture
of an automobile. Whatever the purpose, the drill tip has to be in just the right place
and pointing just the right way. The robot moves the drill about by changing its joint
angles. If we specify the x, y z coordinates of the drill tip, how do we calculate the
values of 0,, 0,, and 0, needed to bring the drill tip to the desired point? Can we also
specity the direction of the drill> These are questions in robot kinematics. In Section
6.5 of Chapter 6, we study the basics of robot kinematics for a two-dimensional robot.
This is the same kind of mathematics used for three-dimensional robot kinematics.

cular Shapes

As chemistry advances, it pays more attention to the geometric shapes of molecules. In
1985 a new molecular shape was discovered, called the buckyball 2, that reminded chemists
of the pattern on a soccer ball. The molecule consisted of 60 carbon atoms distributed in

2 Named for the architect Buckminster Fuller, who promoted the idea of geodesic domes, buildings in the
shape of unusual polyhedra.



MOLECULAR SHAPES < xvii

Forearm

Upper arm

) Drill

Torso

Base

Figure 1.4 A simplified version of a PUMA robot arm.

a roughly spherical shape —like the corners of the pattern on the soccer ball.
Coincidentally, this pattern had been discovered not only by soccer ball manufacturers,
but many centuries ago by mathematicians. Figure 1.5 shows the pattern in a Renaissance
drawing of a truncated icosahedron, by Leonardo da Vinci. To understand the structure of
the buckyball, think of the corners of the truncated icosahedron as being occupied by
carbon atoms and think of the connecting links as representing chemical bonds
betweeen certain carbon atoms. Each carbon atom is connected to each of three other
nearby carbon atoms with a chemical bond. This pattern contains 12 pentagons
and 20 hexagons.

Once chemists discovered this molecule, they looked for other molecules involving
just carbons, where each carbon is connected to exactly three others and where the
pattern has only hexagons and pentagons. Each such molecule turns out to have 12
pentagons. This is not a chemical quirk! It follows from some mathematics we study
in Section 8.4 of Chapter 8.
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Figure 1.5 The pattern of the buckyball molecule, drawn five centuries before the discovery of the
molecule! Courtesy of Jerry Blow.
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