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PREFACE

This is the 86th volume of Current Topics in Developmental Biology (CTDB).
Considering that this series began in 1968, one could ask why it has taken so
long for a thematic CTDB volume to appear on Evo Devo? An answer
might be that Evo Devo is at once an old and a newly emerging discipline.
Under the alias of evolutionary morphology or embryology, it was a
popular scientific study in the 1800s, predating the surfacing of neo-Dar-
winism in the next century. As a new breed of experimental embryologists,
and ultimately molecular embryologists, rushed to determine the secrets of
development, the evolutionary perspective was temporarily left by the
wayside. In retrospect, this was probably the right course: one should
know the rules of development in some detail before attempting to find
out how they are fashioned during evolution.

Beginning in the 1970s, there was a rebirth of interest in Evo Devo,
sparked in large measure by the publication of two books: “Ontogeny and
Phylogeny” by Stephen Jay Gould (1970) and “Embryos, Genes, and
Evolution” by Rudolf Raff and Thomas Kaufman (1983). The latter vol-
ume, in particular, described evolution within the backdrop of new genetic
and molecular discoveries showing that the rules and basic molecular tool
kits used in development are fundamentally similar in all animals and plants.
This launched the first phase of Evo Devo, which was devoted to under-
standing this deep conservation of developmental mechanisms. Although
important, conservation is not the key issue in understanding the role of
ontogeny in evolution. Instead, we must strive to understand the more
complex issue of diversity, that is when, how, and how frequently different
ontogenies arise during evolution. This activity defines the second phase of
Evo Devo and is what this CTDB volume is about.

A large part of Evo Devo’s second phase is understanding when and how
major phenotypes evolved, and the emergence of novel biological entities
during crucial evolutionary transitions, such as the transition from inverte-
brates to vertebrates. Two articles in the current volume are centered on this
theme. Nikita, Sauka-Spengler, and Bronner-Fraser (Caltech) trace the
fascinating evolution of the neural crest to the most basal vertebrates and
perhaps even to invertebrate chordates. Zhang, Eames, and Cohn (Univer-
sity of Florida) take a similar approach to understanding the evolution and
relatedness of cartilage, and its role in establishing a skeletal renaissance
during vertebrate evolution. Another important part of contemporary Evo
Devo depends on the comparative approach. Here emerging model systems
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Xii Preface

consisting of two or more species are used to investigate complex problems,
such as the diversity of body plans, the evolution of sexual reproduction,
and the loss and gain of phenotypes in extreme environments. Raff and
Smith (Indiana University) describe their pioneering studies on direct and
indirect developing sea urchins in which the first molecular discoveries are
presented for the rapid evolution of axial development. Likewise, Moczek
(Indiana University) describes the evolution of horn diversity in horned
beetles, a system that has immense potential for improving our understand-
ing of microevolutionary mechanisms, and especially the role of develop-
mental tradeoffs. When emerging models are coupled with pre-existing
models—their “‘rich cousins” with respect to detailed developmental
knowledge and molecular genetic tools—powerful new insights can be
forthcoming. Thus, Kramer (Harvard University) describes a host of new
land plant models linked in this way to Arabidopsis, Haag (University of
Maryland) shows how divergence in evolution of sex determination can
be studied by comparing Caenorhabditis briggsae to C. elegans, and Jeffery
(University of Maryland) charts the importance of pleiotropy using the blind
cavefish Astyanax mexicanus and zebrafish as companion species. Another
important part of Evo Devo is obtaining a more complete understanding of
the development of classic systems that are ripe for in depth evolutionary
analysis. One of these systems, the polar lobe forming and spirally cleaving
gastropod Illyanassa, is described here by Lambert (University of Rochester),
who shows the importance of localized mRINAs and spatial signaling cues
in determining this novel type of development.

The CTDB volume does not cover every contemporary issue in Evo
Devo. Indeed, many important topics are not addressed. In this sampling,
however, we merely hope to provide examples of how modern cutting-
edge approaches are being used to investigate and generate new understand-
ing of some central issues this field. By doing so, we endeavor to encourage,
and perhaps even inaugurate, the next major phase in Evo Devo.

WiLLIAM R. JEFFERY
College Park, MD
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Abstract

The neural crest is a multipotent migratory embryonic cell population that is
present in all vertebrates, but missing from basal chordates. In this chapter, we
discuss recent work in amphioxus, ascidians, lamprey, and gnathostomes that
reflects the current state of knowledge of the evolutionary origin of this
fascinating cell population. We summarize recent evidence for the ongoing
diversification of the neural crest in several vertebrate species, with particular
reference to studies in nontraditional vertebrate model organisms.

1. GENE REGULATORY NETWORK UNDERLIES NEURAL
CREST DEVELOPMENT

The neural crest, an embryonic population of migratory and multi-
potent precursor cells, is traditionally considered a vertebrate innovation. In
fact, acquisition of the neural crest and neurogenic placodes is considered to
be one of the key events in vertebrate evolution, leading to the appearance
of the jaws, cranium, and sensory ganglia, which enabled the transition of
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early vertebrates from filter feeding to active predation (Gans and Northcutt,
1983; Northcutt and Gans, 1983).

In all vertebrates examined to date, neural crest cells share some common
features. These cells arise at the border between neural and non-neural
ectoderm. They subsequently undergo an epithelial-to-mesenchymal tran-
sition (EMT) to detach from the neural folds or dorsal neural tube, a process
that involves alterations in cell shape as well as acquisition of cell surface
adhesion molecules and signaling receptors. The latter contribute to the
neural crest cells’ ability to migrate to diverse sites where they differentiate
to form numerous different cell types. Neural crest derivatives include neur-
ons and glia of the peripheral nervous system, bone and cartilage of the facial
skeleton, as well as melanocytes and neuroendocrine cells. Interestingly, the
neural crest is the only multipotent vertebrate cell type capable of giving rise
to many cell types that populate different tissues and organs.

To study neural crest evolution, it is necessary to distinguish between a
bona fide neural crest cell and other cell types that might superficially
resemble it. Due to the lack of intermediate forms, it is not clear if all neural
crest traits were acquired in a single step during the transition from nonverte-
brate to vertebrate chordates or if there might have been stepwise acquisition
of these properties (Donoghue et al., 2008). For the purpose of this chapter, we
define “neural crest” as having the entire repertoire of migratory and differ-
entiative properties and refer to cells with subsets of these properties as
“preprototypic crest.” In this way, we distinguish between a migrating cell
that gives rise to a single derivative that in vertebrates arises from the neural
crest (e.g., pigment lineage), from a multipotent precursor that forms multiple
neural crest derivatives and has both regulative and regenerative potential.

One convenient way to define the neural crest is via its regulatory state;
that is, the network of the signaling molecules and transcription factors that
are responsible for its induction, delamination from the neural tube, migra-
tion, and differentiation (Sauka-Spengler and Bronner-Fraser, 2006). Such a
neural crest gene regulatory network (NC-GRN) confers onto this cell type
the classical neural crest characteristics and provides a mechanistic explanation
of how these characteristics arise in a developmental context. A framework of
basic modules has been proposed to comprise this network (reviewed in
Meulemans and Bronner-Fraser, 2004; Nikitina and Bronner-Fraser, 2008;
Sauka-Spengler and Bronner-Fraser, 2006, 2008) and provides a solid foun-
dation upon which questions pertaining to the evolution of the neural crest
can be addressed.

These regulatory interactions can be divided hypothetically into phases.
The first involves inductive signals that establish the neural plate border, by
upregulation of transcription factors that specify the neural plate border
region. These neural plate border specifiers in turn regulate neural crest specifier
genes that activate or repress specific downstream targets that render the
neural crest migratory and multipotent.
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According to the NC-GRN, the formation of the neural crest is initiated
by a set of diffusible signaling molecules (Bmp, Wnt, FGF, and Notch) that
originate from either the ventral ectoderm or the paraxial mesoderm, and
initiate the neural crest transcription program in a strip of cells between
the neural plate and the non-neural ectoderm, the neural plate border.
The early set of transcription factors, turned on in the prospective neural
plate border by the combined activity of the above signaling pathways, are
collectively called the neural plate border specifiers and include Pax3, Pax7,
Msx1, Zicl, and AP-2 (Meulemans and Bronner-Fraser, 2004; Nikitina
et al., 2008). These transcription factors activate another set of genes that are
expressed specifically in the prospective neural crest and play important roles
in the establishment and maintenance of crucial defining characteristics of
the neural crest. These neural crest specifiers include Sox8, Sox9, Sox 10,
c-Myc, and Id (important for the survival of the neural crest precursors and
maintenance of the pluripotency of the neural crest); Snaill and Snail2 (play
a crucial role in the epithelial-mesenchymal transformation, as well as cell
cycle control and the migratory activity of the neural crest cells); and Twist
(required for the correct localization of the migrating neural crest cells)
(Batlle et al., 2000; Bellmeyer et al., 2003; Cano et al., 2000; Honore et al.,
2003; Kim et al., 2003; Soo et al., 2002; Taneyhill ef al., 2007; Teng et al.,
2008). The neural crest specifiers activate transcription of several possibly
interconnected modules that are responsible for the differentiation of the
neural crest population into individual derivatives. Simultaneously, they
turn on expression of receptors that direct migration of the differentiating
neural crest cells to the appropriate destinations in the embryo. Genes
belonging to the two latter categories (the neural crest effector genes)
include signaling molecules, transcription factors (Mitf, trp2), molecules
involved in the cell shape changes essential for the delamination and migra-
tion (Rho GTPases and cadherins) as well as cell-type-specific differentiation
genes characteristic of neural crest derivatives (collagen) (reviewed in
Meulemans and Bronner-Fraser, 2004; Sauka-Spengler and Bronner-Fraser,
2008).

The definition of the neural crest via this NC-GRN has limits, largely
due to the fact that the network is not yet complete. Not every single gene
involved in the neural crest development has as yet been identified, or can
be placed accurately within the network (e.g., Meis, Blimp-1), and the
exact architecture and interconnections therein are still in the process of
being discovered. However, identification and testing of the core elements
of the network allows its application to diverse vertebrates regardless of
whether all of the elements and connections are established. This is particu-
larly useful when applied to the formation of vertebrate-specific traits.
For this purpose, an in-depth study of network components needs to be
conducted exhaustively in a single vertebrate that allows precise spatial and
temporal discrimination. The basal lamprey embryo has been extremely
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useful due to the large size, slow development, and ease of manipulations of
the early embryo. Due to its basal position as an agnathan representative and
its close morphological resemblance to 350-million-year-old fossils, the
modern lamprey NC-GRN may provide a reasonable approximation of
the ancestral vertebrate state.

2. THE EVOLUTIONARY ORIGIN OF THE NEURAL CREST

A hallmark of the vertebrate neural crest is its remarkable plasticity and
ability to form many and diverse derivatives. Neural crest cells have stem
cell properties, multipotency, and the ability to self-renew, at least for a
limited time in their developmental history. The derivatives of a single cell
are as diverse as neurons, cranial cartilage, pigment, and glial cells. This
incredible versatility gives the neural crest its characteristic traits that classify
it as a vertebrate novelty. Its multipotency and migratory ability render this
cell type a crucial invention that contributed to the evolutionary success and
diversification amongst vertebrates.

All vertebrate species, even the most basal jawless members of this group
such as lampreys and hagfishes, have neural crest that is virtually indistin-
guishable from the neural crest of higher vertebrates in terms of multi-
potency, migratory behavior, and the gene regulatory network involved in
its development. In fact, divergences from the basal NC-GRN appear to
occur only at later stages and more distal levels of the network. These steps
contribute to formation of derivative structures such as jaw or sympathetic
ganglion chain. Although lamprey lack jaws and sympathetic ganglia, they
do possess neural crest-derived cranial cartilage and have ganglia-like clus-
ters of neurons scattered along the cardinal veins running in the abdominal
cavity (Johnels, 1956), as well as autonomic control of the vasculature by
catecholamine-containing nerve fibers, resembling sympathetic/adrenergic
control in higher vertebrates. Whether these represent precursors of the
homologous structures, or are simply functionally analogous structures has
yet to be determined (Horigome et al., 1999; McCauley and Bronner-
Fraser, 2003, 2006; Ota et al., 2007; Sauka-Spengler et al., 2007). The
evolutionary origins of the neural crest have therefore been sought among
our closest chordate relatives, amphioxus and the ascidians.

The phylogenetic relationships of different chordate groups have under-
gone drastic reassessment in the past few years, largely due to the availability
of sequenced genomes. For over a hundred years, amphioxus with its very
vertebrate-like body organization was considered a sister group to verte-
brates, while mostly sessile urochordates were thought of as a more distantly
related side group (Wada, 2001). Early phylogenetic analyses of 18S ribo-
somal RNA sequences in a limited number of species confirmed amphioxus
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as the closest vertebrate relative (Turbeville ef al., 1994; Wada and Satoh,
1994), while analysis of the complete small and large ribosomal subunit
DNA provided ambiguous conclusions (Winchell et al., 2002). A different
story began to emerge after a large data set of nuclear genes from a range of
deuterostome species was examined, and the long-branch attraction artifact
that results in the fast-evolving ascidian species being attracted toward the
echinoderm/hemichordate outgroup was taken into account (Blair and
Hedges, 2005; Breau et al., 2008; Delsuc et al., 2006). The new view of
the chordate phylogeny that emerged demonstrated that ascidians and not
cephalochordates are the true sister group of vertebrates. This conclusion
received further independent support from the genome-wide analysis of the
intron—exon structures in amphioxus and several vertebrate and ascidian
species (Putnam et al., 2008).

Consistent with the latest understanding of chordate phylogeny is the
fact that amphioxus does not have anything resembling the neural crest
(Holland and Holland, 2001), while migratory preprototypic neural crest cells
have been discovered in several ascidian species (Jeffery, 2006; Jeftery et al.,
2004). Based on the experimental data currently available, two opinions as to
the time of the neural crest origin have emerged in the recent years (Fig. 1.1).
According to one hypothesis, the neural crest first appeared in the common
ancestor of the ascidians and vertebrates, after the separation of the ancestral
cephalochordate lineage (Donoghue et al., 2008). Proponents of this view
consider the migratory preprototypic neural crest-like cells (NCLCs) found
in some of the modern ascidian species as true neural crest cells. Alternatively,
these cells may represent an evolutionary experiment or an intermediate step,

A B

Neural crest

dwersnflcatlon\ ——
Appearance of " neural crest cel|s\\-—-
true neural crest Vertebrates Vertebrates
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Figure 1.1 Current hypotheses of the time of neural crest origin. According to the first
one (A), the neural crest first appeared in the common ancestor of the ascidians and
vertebrates, and underwent diversification to form a wider range of derivatives in the
vertebrate lineage. Alternatively, the true neural crest may have originated at the base
of the vertebrate lineage, after the urochordate—vertebrate split (B).



