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PREFACE

In my own teaching I have found that to introduce the student to
analytic geometry by way of vectors not only furnishes elegant proofs
but also gives him early familiarity and training in vector concepts that
are invaluable to future scientific work. By means of vectors, solid analytic
geometry can be studied practically simultaneously with plane analytic
geometry, and polar coordinates can be brought in early. Not the least
of many advantages is that early introduction to vector methods in
analytic geometry makes later work in physics or engineering much easier,
and in fact would save much time in those courses that must otherwise
be devoted to developing vectors.

A recent trend in mathematics has been to combine, or “integrate,”
analytic geometry and calculus, usually in a three-semester sequence.
Most texts now available which combine these two subjects underempha-
size the analytic geometry. After a very meager introduction to analytic
geometry, they move into calculus at full speed, not returning to analytic
geometry until 150 or 200 pages farther on. It seems to me that this
scanty preparation in analytic geometry is not an adequate background
for the calculus. Perhaps I may be considered too conservative, but I have
felt that the emphasis during the first serester, or at least the first quarter,
should be on the analytic geometry, with calculus first being developed
for finding tangents to curves and normals to surfaces; and that there
should be too much analytic geometry to choose from rather than too little.
This book was originally begun with this aim in mind: to combine analytic
geometry and calculus in this manner for a three-semester course, but
when the analytic geometry subject matter was completed together with
the necessary calculus for tangents and normals, it seemed appropriate to
publish it as a straight analytic geometry text for a course of one semester.
Incidentally, only the difference quotient limit is used; calculus language
such as derivative, Dy, etc. is aoided. The constant repetition of its use
emphasizes that the difference quotient is a basic concept of the calculus.

These three features, the thorough development of vector methods from
the very beginning, the generous amount of analytic geometry to choose
from, and the not inconsiderable amount of calculus motivated by the
need to find tangents and normals, may so enhance the value of the
regular analytic geometry course as to save it from fading into oblivion.

This book is not, and is not intended to be, an exhaustive treatise on
vectors. It uses only that much of vector analysis that goes naturally with
the development of analytic geometry and calculus at the elementary
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level. A remarkably small amount of vector analysis is needed for this
purpose, only up to and including the dot and cross products of vectors
and their geometric properties.

It was thought worthwhile to include a little linear algebra, so some
material on abstract vector spaces is woven in, paralleling the three-
dimensional development to a certain extent, up to the point of defining
inner product spaces. This material may be too difficult for most be-
ginning students, but some instructors may wish to experiment to see how
much of it can be absorbed. It is purely background material, and no
exercises are based on it. I shall appreciate receiving comments as to how
successful this feature is.

Incidentally, some knowledge of determinants is needed, and a short
summary of their properties and main theorems is given, mostly without
proof. In several places in the text, the conditions for nontrivial solutions
of linear homogeneous equations are needed, and these are developed more
fully (with proofs), together with Cramer’s Rule.

Every instructor knows how “unfair’’ of him it is to expect students to
remember any trigonometry after they have passed that course, so the
student will have to be prodded into recalling certain exotic items such as
the functions of 0°, 30°, 45° 60° 90° 180° the addition formulas, the
double-angle formulas, right-triangle relations, etc., as they are needed.
Some of these topics are reviewed here and there in the text, some from
the point of view of vectors.

It is very important that students be given regular out-of-class assign-
ments and that some method be found to insure that these are seriously
attempted, because then the class explanations take on much more mean-
ing for the student. It is especially important in the case of the vector
assignments that all or nearly all of the problems not only be assigned,
but also be done in class by the instructor. Many of the problems extend
the theory. Vectors are a strange and new subject for the student; it is
not a forbidding subject, in fact most students are quite intrigued and
often fascinated by the power and elegance of vectors; but since vectors
are new and unfamiliar, the student should be led by the hand a bit more
than usual. After all, the text states a fact only once or twice, while the
repetition of the basic ideas given by the instructor in doing the problems
in class helps enormously in clarifiying vectors for the student and makes
them appear natural to use.

There is probably more material in the book than can be handled
comfortably in one semester. The general equation of the second degree
and abstract vector spaces could be postponed to a later course (or assigned
as a reading project for the good students), and the material on radical
axes could be omitted. Discussions of families of curves could be omitted.
Also, if time is limited, fewer exercises could be done in class, especially
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those on the fine points concerning conic sections. But the vector material
at the beginning and the calculus material at the end should not be cur-
tailed.

I wish to take this opportunity to express my deep appreciation and
gratitude to Mr. M. L. Clabaugh, who spent many hours typing and re-
typing the manuseript and who suggested many improvements. My
thanks also to several anonymous reviewers for their constructive eriticism
and suggestions, most, of which I tried to follow.

C. W.
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CHAPTER 1
INTRODUCTION

Analytic geometry is a wedding of algebra and geometry. The ancient
Greek mathematicians, with their marvelous minds, concentrated on
geometry and perfected it to a high degree. But, to our great loss, they
more or less ignored arithmetic (and the beginnings of algebra) because it
was developed to serve trade and commerce. Trade and accounts, and
hence arithmetic, were the province of slave supervisors, while mathemati-
cians devoted their thoughts to the higher arts. It took about 1500 years
for arithmetic and algebra to spread across Europe, and it remained for
René Descartes to recognize what a powerful tool algebra would be in
simplifying and extending geometry. It was only after a sufficient interval
for developing this idea that the time was ripe for Isaac Newton to create
an even more powerful new tool, the calculus.

Descartes’ fundamental idea, like most great inventions, was simple.
Why not set up two basic directions, such as a “horizontal” and a “verti-
cal” direction (from a central starting point O, called the origin), which
would serve as measuring sticks to locate any desired point P in the
plane? The distance along the horizontal direction could be denoted by
a negative, positive, or zero number, depending on whether one had to go
to the left, or to the right, or neither to reach a given point. Similarly, the
number denoting the vertical distance could be positive, negative, or zero,
according to whether one had to go up, down, or neither to reach the
point.

Following Descartes’ construction, illustrated in Fig. 1-1, we find that
to every point in the plane there corresponds a pair of real numbers, x and
y; and, conversely, to every pair of real numbers there corresponds one
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and only one point. The horizontal line is called the z-axis, its positive
direction being to the right; the vertical line is called the y-axis, its positive
direction being up. The two numbers written “(z, y)” are called the
coordinates of the point P, respectively the z-coordinate and y-coordinate
(sometimes called the abscissa and the ordinate). The origin O has co-
ordinates (0, 0); any point on the z-axis has coordinates (a, 0); just as any
point on the y-axis has coordinates (0, b). Thus the z-axis is characterized
by the equation y = 0. In words, every point on the z-axis has as its
y-coordinate the value of zero; conversely, any point whose y-coordinate
is zero lies on the x-axis.

When there is such a relation between a curve and an equation, namely,
that the coordinates of any point on the curve satisfy the equation and
any point whose coordinates satisfy the equation must lie on the curve,
we say that the equation is the egquation of the curve. Thus y = 0 is the
equation of the z-axis. Similarly, z = 0 is the equation of the y-axis.

It can be seen that the idea of a “coordinate system” or “frame of refer-
ence,” as this scheme of having an origin and two basic directions is called,
presents great possibilities. For example, to study a circle of radius a,
we can choose the origin to be at the center of the circle (Fig. 1-2). We see
by the Pythagorean theorem that the coordinates (z, y) of any point on the
circle satisfy the equation 22 4~ y> = a2, and that any point whose coordi-
nates satisfy the equation z? 4+ y? = a? is the vertex of a right triangle
of hypotenuse a, at distance a from the origin, and hence lies on the
circle. All properties of a circle are presumably embodied in its equation.
We shall study the circle in detail from this point of view later.

Going back to Descartes’ fundamental idea, we see that we can reach
any point in the plane by means of two directed line segments, right or
left and up or down. Similarly, we can reach any point in three-dimen-
sional space with three directed line segments by providing a third axis,
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the z-axis, perpendicular to the plane of the z-axis and the y-axis at the
origin (Fig. 1-3).

The basic idea of directed line segments is very important, not only in
analytic geometry and mathematics in general, but also in physics and
engineering. Directed line segments are called veciors. We shall devote
the next chapter to building up an “algebra” of vectors and using it to
develop the fundamental concepts of analytic geometry. The reader will
find vector analysis a somewhat strange but very stimulating subject. If
he applies himself and learns to incorporate it into his thinking, he will
find it a. wonderful help in finding his way about in space. But the thrill
of knowing that he is beginning to master the subject will come only
when he finds he can do many of the exercises, some of which are not easy.

Exercise Grour 1-1

1. Draw a two-dimensional frame of reference, marking the z- and
y-axes. Plot the following points and write the coordinates next to each
point in your drawing: (3, 0), (0, 2), (—3, —2), (=2, 3).

2. Draw a three-dimensional frame of reference, marking the three
axes. Plot the following points: (2, 0, 0), (0, 1, 0), (1, 2, 3).

3. What is the equation of the straight line through (2, 1) and (2, —3)?
through (2, 1) and (—1, 1)? Draw each line first.

4. What is the equation of the zy-plane in three dimensions? the
rz-plane?  the yez-plane? the plane through the points (3,1, 2),
(_1: 27 2)) (O; O) 2)?

5. Find two equations that together characterize completely the z-axis
in three dimensions; likewise for the y-axis; the z-axis.

6. Find the equation of the line containing the origin and the point
1, 1).
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7. 22 — 9 = 0 is the equation of what curve(s)?

8. 22 + y? — 9 = 0 is the equation of what curve?

A remark is in order about the use of our phrase “the equation of a
curve.” It was pointed out above that ¥ = 0 is the equation of the
z-axis. The y-coordinate of every point on the z-axis is certainly zero,
and any point whose y-coordinate equals zero certainly lies on the r-axis.
But the same is true of 5y = 0 or of (z? + 1)y = 0. Every point on the
z-axis satisfies each of these equations; also, any point that satisfies either
of these equations must lie on the z-axis. The reason is that 5y or (z2 + 1)y
can equal zero only when y = 0. So, strictly speaking, y = 0 is only one
possible equation of the z-axis. There are many. Hence when we speak
of “the equation” of a certain curve, we shall mean that the particular
equation being discussed satisfies the two-part definition of “equation
of a ecurve,” namely, that every point on the curve satisfies the equation
and, eonversely, any point that satisfies the equation must lie on the
curve.



CHAPTER 2
FUNDAMENTAL CONCEPTS

2-1 Vectors. Definitions and operations. A vector is a directed line
segment. Note that there are two aspects to a vector: it has direction,
and it has length or magnitude. Any entity that has these two qualities
can be represented by a vector. Thus if we use a scale of } inch = 10
miles, the speed of a car traveling northeast at 40 mi/hr can be expressed
as a one-inch arrow pointing in a direction 45° above the horizontal to the
right (east) (Fig. 2-1). The weight of a 165-ib man (the gravitational pull
of the earth) can be represented by an arrow of appropriate length pointed
in a downward direction.

In print, vectors are usually denoted by boldface type, such as A or r
and their length by [A| or |r|, sometimes called the absolute value of A
orof r. In handwntlng we usually indicate the vector by a letter with an
arrow above it: A r. Sometimes, even in print, ~we shall use a beginning
point and an endpoint with an arrow, for example OP to de51gnate a vector;
its magnitude is then designated by IOP] See Fig. 2

N .
40 mi/h
mi/hr \A\

\OPI

|
|
|
|
|
|
|
|

Figure 2-1 Figure 2-2 Figure 2-3

(a) Definition of equality. Two vectors are equal if and only if they have
the same length and the same direction. Note (Fig. 2-3) that equal
vectors do not necessarily start from the same point, nor must they be
along the same line. The vectors we will deal with are free vectors, unless
otherwise specified. They can be transported from place to place; and so
long as they remain of the same length and keep the same direction, we
consider them to be the same vector or equal vectors. This may seem to
be a rather loose way of thinking of “same” or “equal.” Some writers
prefer the term “equivalent,” reserving “equal” to mean identical or
coincidental vectors. But we prefer to use the words “equal” or “same” in
the loose sense; in the few cases where we mean to indicate strict equality,
we shall be careful to point it out.
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Figure 2-5

We shall use the word “parallel” with the same freedom. The term
parallel vectors will include the special case where the two vectors are along
the same line or even when they coincide. Thus a vector is parallel to
itself. Also, two vectors in opposite directions, as well as vectors in the
same direction, can be called parallel.

Consistent with the idea of free vectors is that of angle between two vec-
tors, even if the vectors do not meet. We can transport them parallel to
themselves to emanate from the same point. Then the angle between
them that is between 0° and 180° inclusive 1s called the angle between
the two vectors (Fig. 2-4b). Thus if one’s right arm extends upward and
the left arm forward, the angle between them is 90° in spite of the fact
that they do not meet in a vertex. Since we cannot distinguish between
clockwise and counterclockwise in three dimensions, we do not need
negative angles.

One other term that we shall use occasionally is direction vector.
Very often we are concerned only with the direction of a vector and not
with its size. For example, a straight line is completely determined by a
point P which lies on it and any vector A along it (Fig. 2-5). The mag-
nitude of A does not matter; a vector twice as long, or in general kA,
would do just as well, where k is a pure number not zero and may even
be negative. The pure number k is called a scalar. Likewise, a plane
(Fig. 2-6) is determined by a given point P which lies in it and any vector
N perpendicular to it. Such a vector is called a normal of the plane. N
may be of any length; kN would do just as well. We shall freely multiply
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FiguRre 2-6 Ficure 2-7

Ficure 2-8

a direction vector by any convenient scalar not zero; and just as we spoke
of the equation of a line even though it was one of many, we shall speak
of the direction vector of a line and the normal to a plane. In the next
paragraph we discuss further the concept of a scalar times a vector.

(b} Definition of addition. Two or more vectors are added by the
polygon rule: from the arrowhead of one vector, the second vector (of
correct length and direction) is drawn; from its tip, the third vector is
drawn; and so on, as illustrated in Fig. 2-7. The vector sum is the vector
that extends from the beginning of the first vector fo the tip of the last
vector, i.e., the vector (A + B + C in the figure) which completes or
“closes” the polygon, Note that this could be a twisted polygon in three-
dimensional space; i.e., not in a plane,

Referring to Fig. 2-8, we see that A + A = 2A is a vector in the same
direction as A and of twice the length. Likewise kA is k times as long as
A and in the same direction if k is positive. However, if k is negative, kA
is in the opposite direction from A and is |k| times as long. As noted
above, k is called a scalar. If two vectors are parallel, one is a scalar
times the other; and conversely, if nA = mB (m and n being scalars not
equal to zero), then A and B are parallel vectors. Further, A/[A| = i’
is the unit vector (length = 1) in the same direction as A, and A = |A]i".

(¢) Definition of subtraction. A — B is the vector which added to B
gives vector A. It is therefore the vector fram the tip of B to the tip of A.
(See Fig. 2-9.) One could, of course, add —B to A to give A — B, as
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shown in Fig. 2-10. The second method is better for problems like
3A — 2B 4 4C — 2D. :

Exercise: Prove that the two vectors given by these two methods, both
alleged to be A — B, are actually the same (i.e., have the same length and
same direction). See Figs. 2-9 and 2-10.

The operations of addition and subtraction lead to an important special
vector. In the case where the addition of the vectors leads to a closed
polygon, the endpoint of the last vector coinciding with the beginning
point of the first vector, as in Fig. 2-11, we define the sum to be a vector
of zero length, called the null vector, and we write A +B + C + D = 0.
The invention of the null vector makes addition of vectors always possible.
The null vector does not have direction; it is undefined. Thus A 4
(—A) = 0, the null vector; also, 0 + A = A + 0 = A;and if

mA -+ nB = 0,
we can say that
nB=0—mA= —mA

(the vector which added to mA gives 0) by the definition of subtraction.
This justifies “transposing” a vector from one side of an equation to the
other, as in ordinary algebra.

One other remark should be made. Many readers may have already
met addition of vectors in earlier work, using the “parallelogram law”
of addition to find the “resultant” of two forces. The method is as follows:
Two vectors A and B emanate from a common point O, as shown in Fig.
2-12. Then from the endpoint of each vector, a line is drawn parallel
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Ficure 2-13 Ficure 2-14

to the other vector, these lines intersecting at point P. Thus a parallelo-
gram is formed. The diagonal vector OP is called the resultant or sum
of the vectors A and B. This method agrees with the polygon method,
since OP divides the parallelogram into two congruent triangles, either
of which considered by itself is a special case of our polygon method of
addition. The polygon rule is more general in that any number of vectors
can be added at once, while by the parallelogram law a new parallelo-
gram, formed by the preceding resultant with one additional vector,
must be painstakingly drawn after each addition.

It is fairly evident from the definition of addition of vectors that:

(1) A+ B = B + A (called the Commutative Law for Addition).
2A+B+C=A+B)+C=A+ B+ C)
= (A + B 4 C) (the Associative Law for Addition).
(3) A; + Az + Az - -+ A, can be added in any order; for example,
itisequal to Ag + Ay + Ag---+ Ay - ---.

The Commutative Law follows from the fact that A + B and B + A,
emanating from a common point, form a parallelogram; and the diagonal
thereof, as shown in I'ig. 2-13, is simultaneously the vector A + B and
the vector B -~ A (the Parallelogram Law again).

The Associative Law follows directly from the fact that when vectors
are added, the same vector closes all three polygons, as shown in Fig. 2-14.

As to property (3), which is a generalized commutative law, our method
of addition enables us to say that

A+ Ay +Az--- A,
is the same no matter what set or sets of A’s are enclosed in parentheses.
TFor example, we can write

(A1 + Ag) + (Az + As+ Aj) + (Ap + - - - Ay),

a generalized associative law, since the vector necessary to close the
polygon is always the same. Hence by placing parentheses around pairs
and applying the Commutative Law repeatedly, we can put the A’s in
any order we please.



