

Ken Dragoon

Valuing Wind Generation on Integrated Power Systems

Ken Dragoon

William Andrew is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2010

Copyright © 2010 Ken Dragoon Published by Elsevier Inc. All rights reserved

The right of Ken Dragoon to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data A catalog record for this book is availabe from the Library of Congress

ISBN-13: 978-0-8155-2047-4

For information on all William Andrew publications visit our web site at books.elsevier.com

Printed and bound in the USA

10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

Preface

Thank you for sending me a copy of your book—I'll waste no time reading it.

Moses Hadas, 1900-1966

The purpose of this book is to help power system analysts, consultants, and regulators understand, undertake or better understand wind integration studies. A significant diversity exists in the power industry with respect to operating practices, level of sophistication in the industry's analyses, and in the very language used. For that reason, there is no single way to serve all analytical needs with respect to wind valuation studies. A range of approaches to the analytical problems will be presented where possible. A fairly complete glossary is included in the back of the book to address the various usages of terms such as 'capacity' and 'reserves'. It is not practical at this point to suggest that common definitions of certain terms be adopted. The purpose of the glossary is to make as clear as possible what is meant by important words and terms as they are used in this book.

Acknowledgements

There is no way to adequately express the gratitude I feel toward everyone who contributed to this book. First of all must be Phil Carmical, who suggested the seemingly crazy idea that I might write a book about wind power. I am also totally indebted to Rachel Shimshak and the Renewable Northwest Project who gave me my all-time dream job, and who encouraged this work.

I have learned the hard way that books are really the work of many people who have to set the author straight. It is hard to find the words to thank all the contributors who tried to keep me on the right track, helping make the book reasonably complete and pointing out where I may have gotten things wrong or just garbled. The remaining errors are all mine (one of the perks of writing a book). This work would have been much less complete, accurate, and understandable without the generous help of subject matter experts: Brendan Kirby, Michael Milligan, Hannele Holtinen, Charlie Smith, Cameron Potter, Justin Sharp, and Esben Hegnsholt Olsen. Special recognition is due to Brendan Kirby and Charlie Smith, who came through when time was short. Thanks also to Michael Schilmoeller, Katie Kalinowski, Sam Lowry, Diane Nowicki, and Cindy Towle for their editing assistance.

Thanks also to Steve Wasserman for acting on my behalf in a first-ever book endeavor. Thanks to my wife and family for putting up with my being missing in action nights and weekends to put this work together. And, of course, thanks to all the readers of this book who will help move wind power into the mainstream as a resource forming a vitally important part of the generating resource mix in the USA and abroad.

Contents

Preface				i i		
Acknowledgem	ents					
CHAPTER 1	Introduction					
CHAPTER 2	Overview of system impacts of wind generation					
		on power systems				
	2.1	2.1 Primary economic effects of wind power				
	2.2	Role o	of wind forecasts in wind power economics	3		
	2.3	Wind a	as an energy resource			
	2.4	Other	potentially important effects	1		
	2.5	Proper	rties of wind output in aggregate	13		
		2.5.1	Effects of high-pressure systems and weather fronts	16		
		2.5.2	Weather fronts and wind ramps	18		
		2.5.3	Wind generation data	19		
	2.6	Summa	ary	19		
CHAPTER 3	Gen	eral app	proaches to valuing wind on power systems	2:		
	3.1		valuation components	2:		
		3.1.1	Direct wind generation cost	عاح		
		3.1.2	Gross value of generated energy	26		
		3.1.3	Value of renewable energy credits			
			and emissions reductions	27		
		3.1.4	Cost of holding additional reserves			
			due to wind variability and uncertainty	29		
		3.1.5	Effects on reserve generation operating costs	32		
		3.1.6	Balance of system and market trading costs	33		
	3.2	Summa	ary	3r		
CHAPTER 4	Deve	Developing useful wind generation data				
	4.1	_	vity of statistics to scaling	38		
		4.1.1	Scaling to nearby wind projects	4:		
	4.2	Conver	rting wind speed to wind output	42		
		4.2.1	Adjusting wind speed measurements to hub height	43		
		4.2.2	Multi-turbine power curve equivalent	ЦL		
		4.2.3	Block-averaged wind speeds	46		
	4.3	Using (weather model data	47		
	4.4	Summa	ary	48		
CHAPTER 5	Repr	Representing wind in economic dispatch models				
	5.1					
		in dispa	atch models	52		
	5.2	Fixed t	time series in forward- and			
		backwa	ard-looking analyses	53		
	5.3	Repres	enting wind as load reduction			
		or fixed	d generation levels	55		
	5.4	Repres	enting wind as an equivalent			
		therma	I generation station	57		
	5.5	Summa	aru	61		

vi Contents

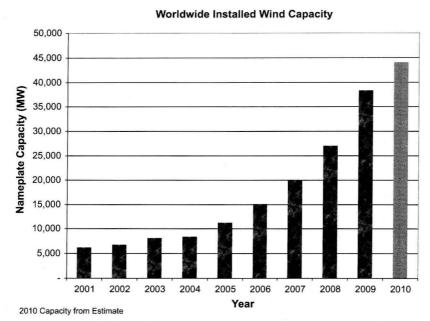
CHAPTER 6	Pou	63	
	6.1	Principles of reserve requirement analysis	63
		6.1.1 Incremental reserves to ensure reliability	64
8		6.1.2 Distinct importance of variability and uncertainty	65
		6.1.3 Reserve requirements depend on both load	
		and wind characteristics	66
	6.2	Reserve nomenclature	70
		6.2.1 Planning reserves	71
		6.2.2 Operating reserves	71
	6.3	Determining non-contingency operating	
	*	reserve requirements	73
		6.3.1 Segmenting reserve requirements by type	77
		6.3.2 Conditional reserve requirements	83
	6.4	Summary	84
CHAPTER 7	Win	87	
	7.1	d power forecasting Types and uses of wind forecasts	87
	7.2	Climate and weather	89
	7.3	Forecasting techniques	90
	7.4	Forecast error measures	92
	7.5	Forecast accuracy	95
	7.6	Developing synthetic forecasts	97
	7.7	Summary	98
		-	
CHAPTER 8		d energy valuation studies	101
	8.1	System responses to wind generation	103
	8.2	Study design	103
	8.3	Model modifications for wind	105
		8.3.1 Modeling variability	106
	100 at 100	8.3.2 Modeling forecast uncertainty	107
	8.4	Example study results	108
	8.5	Portfolio risk and wind generation	109
	8.6	Costs and value not captured by CEDMs	111
	8.7	Study validation	112
		8.7.1 Input validation	112
		8.7.2 Algorithm validation procedures	112
		8.7.3 Validating results	113
	8.8	Over-specification of wind costs	114
	8.9	Summary	115
CHAPTER 9	Wind	d integration costs	117
	9.1	Wind integration cost study design	118
		9.1.1 Design for CEDM-based studies	118
		9.1.2 Non-CEDM study design	121
	9.2	Simplified non-CEDM wind integration	
		cost example	122
		9.2.1 Calculating increased reserve requirement	123
		9.2.2 Incremental fixed costs	123
		9.2.3 Incremental fuel costs	124
		9.2.4 Market transaction costs	127
		9.2.5 Summary of costs	130
	9.3	Cost allocation	131
	9.4	Incremental reserve requirement behavior	132
	aments.	9.4.1 Importance of standard deviation	132
		9.4.2 Summing distributions	133
		9.4.3 Effect of project size: Examples	135
		Old Francisco Francisco Francisco	133

				Contents	VII
		9.4.5	Small increment approximation		136
		9.4.6	Dependence on order		137
		9.4.7	Real data and the inconstancy of the z-statis	stic	138
		9.4.8	Conclusion		138
	9.5	Summa	aru		138
CHAPTER 10	Wind	Louier	's contribution to meeting peak demand		141
CHAPILK 10	10.1		ty value and effective load-carrying capability		142
		100000	ting effective load-carrying capability		144
		7700000	apacity value characteristics		149
		Case s			150
		10.4.1	State of New York		150
		10.4.2	State of Minnesota		151
		10.4.3	German study		152
		10.4.4	Irish study		152
	10.5	Summa	ary		153
CHAPTER 11	Effec	ts of m	narkets on wind integration costs		155
	11.1	Market	size and access		157
	11.2	Schedu	uling rules and imbalance settlement		158
	11.3	Ancilla	ry service requirements and charges		159
	11.4	Partici	pation in redispatch		160
	11.5	Wind f	orecasting services		162
	11.6	Capacit	ty valuation		162
	11.7		incentives		163
		11.7.1	Federal incentives		163
			Non-federal incentives		166
	11.8		nission construction cost recovery		
			ficient use of capability		166
		11.8.1	Efficient use		166 167
	11.9	Summa	Transmission construction cost recovery		168
CUADTED 13			**************************************		
CHAPTER 12	12.1		uind energy value		171 172
	15.1	12.1.1	ng reserve generation requirements Improved wind forecasting		173
			Shorter scheduling lead times		174
			More frequent market transactions		175
	12.2		nt provision of balancing services		175
			Wider sharing of balancing needs		175
			Incorporating a broader range		
			of balancing generators		176
	12.3	Active	management of wind and demand		179
	12.4	Dedica	ted storage technologies		180
	12.5	Summa	ary		181
CHAPTER 13	Revie	ew of s	elected wind integration studies		183
	13.1	Sampli	ng of studies		185
		13.1.1	2006 Minnesota wind integration study		185
			2005 NYSERDA wind study		187
		13.1.3	California Energy Commission 2007 IAP		0.000
		sees to	Final Report		189
		13.1.4	Eastern Wind Integration and		101
		13.1.5	Transmission Study (EWITS) Western Wind and Solar Integration Study		191
		13.1.3	(WWSIS)		194
		13.1.6	All Island Study (Ireland)		198
	13.2	Summa			201

13.2 Summary

viii Contents

CHAPTER 14	Considerations for high penetration wind systems		
	14.1 Market organization	206	
	14.2 Energy storage	207	
	14.3 Facility siting	210	
	14.4 Wind forecasting	211	
	14.5 Controlling wind generation	212	
	14.6 Summary	213	
APPENDIX A	Wind forecasting vendors	215	
Glossary		217	
Index		227	


Introduction

Wisdom sails with wind and time.

John Florio, linguist and lexicographer, 1553-1625

Wind power has become one of the fastest growing technologies in the world for producing electric power (WWEA, 2009). Environmental concerns are driving public and private industry policies that help promote this relatively economical, emission-free source of electric power. The US Department of Energy reports that wind energy may supply 20% of all electric power consumed in the USA by the year 2030 (US DOE, 2008), the percentage roughly equivalent to the load currently served by nuclear energy. Although wind energy production in the USA recently topped other nations, Europe still leads North America in installed wind generation by nearly two to one (WWEA, 2009), planning to reach 30% or more. The top four countries in percentage of energy generated by wind generation are Denmark (20%), Portugal (15%), Spain (14%), and Germany (9%). Figure 1.1 shows the growth of installed wind generating capacity from 2001 to 2010.

Several factors fuel European dominance over the USA. Chief among them is stronger government policies in Europe mandating renewable energy development as an important means to address the climate change crisis. Other factors may also be at work. Historically tasked with finding the most cost-effective means of ensuring reliability of power systems, American planners and power system operators are not natural allies of a resource perceived to be more costly and less reliable than traditional power sources. The prospect of meeting load with a resource as variable and uncertain as wind power is often accompanied by a rather skeptical attitude over how such a power source can reliably and economically meet demand. This book is intended to help analysts understand the value of wind energy in the context of complex power systems and to demonstrate that wind energy can contribute to meeting load in an economical, efficient, and reliable manner.

FIGURE 1.1 Installed worldwide wind-generating capacity. Source: World Wind Energy Report 2009.

Every type of electric power generation brings its own peculiar set of advantages and disadvantages. Coal and nuclear plants tend to generate at relatively consistent levels, but are subject to significant maintenance outages for repair work or refueling. They have limited ability to adjust to the dynamic nature of demand, and may take days to reach full output from a full shutdown. Power plants fueled by natural gas tend to be relatively flexible in changing output to meet the dynamic characteristics of demand through the day, but are also subject to relatively volatile fuel prices. Hydro units are often some of the most flexible generation resources in a utility portfolio, but have complex time-dependent behavior that can become constrained during extremes of streamflow conditions or by operations dictated by environmental concerns. Many utilities have adopted integrated resource planning techniques to evaluate the economics of incremental generators added to a diverse portfolio of generators. Such techniques are invaluable in weighing the economics of incremental generating units with different fixed and variable costs, and that may have different effects on the operations and economics of the existing units.

Wind has its own peculiarities—generation that is variable, relatively uncontrollable, and less predictable than most other types of generation. Power system operations staff may be understandably vexed at the prospect of a resource over which they may have little or no control, and

which they may feel cannot be predicted. Indeed, one real-time operator remarked to me that wind brings no value whatsoever to the power system. It is important to understand the true characteristics of wind (not entirely unpredictable, not entirely uncontrollable), and to acknowledge its limitations. While wind generation will never be the favored child of operators charged with constantly adjusting generation to meet load through time, it brings great value in reducing fossil-fuel consumption, associated atmospheric emissions, and dependence on imported fuels.

A complete understanding of the value of wind on an integrated power system is not a simple matter, and many utilities have undertaken complex studies, often with the help of specialized consulting firms, to help determine wind integration costs. The complexity of some of the studies, and the lack of uniformity of what is meant by integration costs, has contributed to some of the wide variation in results along with real differences in system characteristics. This book will provide some perspectives on the analysis, pointing out different methods that have been used, and pitfalls awaiting the unwary. It is important to realize that the subject is a very active area of investigation and improvement, and it is therefore likely that over time new and important approaches and results will be developed. The idea of this book is to help out anyone considering undertaking a wind valuation study for the first time, looking into improving a first- or second-generation analysis already performed, or monitoring the work of a consultant hired to perform a wind study. Areas that need additional attention are pointed out along the way.

Although the specifics of the interactions of a wind project and its interconnected power system can be complex, the analysis need not be overly complex. Every study of the behavior of power systems is an approximation. Determining a reasonable and sufficient level of modeling complexity is a key function of the competent analyst. Increased complexity does not necessarily result in increased accuracy for a variety of reasons. Probably the biggest reason is that the likelihood of error increases dramatically with complexity. Computer models of power system dispatch will contain many thousands of numbers representing the characteristics of the power system. Some percentage of these numbers will be wrong—possibly entered incorrectly, misinterpreted, or overlooked in the latest update, etc. Some errors may be tolerated, but some of them are likely capable of rendering the study completely invalid. In the press of time and staffing, the level of sophistication in error detection and study verification often lags to a dangerous degree.

In addition to outright data errors, model logic is often highly tuned to existing operations with traditional power generators, often making it necessary to change algorithm logic to correctly model a power system with substantial amounts of a resource with significantly different operating characteristics such as wind. In the complexity of modern power systems and computer models, changing the logic of one part of

4 Introduction

a computer model can have unexpected consequences, resulting in unrealistic simulations of actual operations in other areas.

In other words, given available staff and tools, modeling all the complexity inherent in a large power system's interaction with wind generation may not be the best approach for every study. There is no single best way to analyze wind on your power system. There are many approaches, and some are simpler than others. The simpler methods are not always inferior, and in some cases may well be superior to the more complex methods discussed. In most cases, simpler methods should be employed at least as a check on a more complex analysis. This book will try to be clear on the applicability of different methods.

One last note is that this subject is not only important from a social and environmental perspective, but it is also intellectually engaging and rewarding. Consider these intriguing challenges:

- The effect of a specific wind power project cannot be expressed separately from the power system into which it interconnects.
- The effects of one wind project can be markedly different from the effects of two or more acting together in a power system even if individually they act identically.
- The statistical behavior of wind generation cannot be easily or simply characterized.
- While average wind generation may be deduced from on-site wind speed measurements, the temporal behavior is a much more complicated matter.

There are interesting problems here, and the prospect of a non-polluting resource with no fuel costs is an enticement that makes the endeavor both socially and intellectually compelling.

REFERENCES

US Department of Energy (DOE) (2008). 20% Wind energy by 2030: Increasing wind energy's contribution to US electricity supply, July. http://www.20percentwind.org/20percent_wind_energy_report_revOct08.pdf;

World Wind Energy Association (WWEA) (2009). World Wind Energy Report 2009.

Overview of System Impacts of Wind Generation on Power Systems

If a man does not know what port he is steering for, no wind is favorable to him.

Seneca, mid first century philosopher

Power systems typically consist of many interdependent components, including power-generating units, high-voltage transmission lines, substations, and customer loads. Adding new power plants to an existing portfolio of resources and loads can result in substantial operational changes for the pre-existing components. For example, adding a baseload thermal unit will reduce the frequency of dispatch for higher variable-cost resources such as natural gas powered generators. Similarly, adding a peaking unit may reduce the need to vary the output of intermediate units. It is not surprising then that the addition of wind generation to a power system similarly affects the operations of other power units in the power system. The effects of wind generation on a power system may be less familiar to the analyst and can be rather complex, potentially driving new operating procedures in order to maximize the economic efficiency of the joint power system that includes wind.

This chapter explores the effects of wind generation on other generators on an integrated power system in a qualitative sense, with the quantitative methods to follow in subsequent chapters. How wind affects other generation depends largely on the physical characteristics of the existing system, but also on the market structure of the power system—such elements as the length of the operating period (5, 10, 60 minutes, etc.), the

existence of liquid ancillary service markets, interconnection with other balancing area authorities, and interconnection with other liquid market points. For the purposes of this chapter, we will make the simplifying assumption of a vertically integrated utility with limited interconnection to other systems. Such systems do exist (e.g. Hawaii), and the more complex interactions involving other utilities or balancing areas through market mechanisms will be taken up in subsequent chapters.

2.1 PRIMARY ECONOMIC EFFECTS OF WIND POWER

Conceptually, treating wind generation as negative load is helpful in understanding the fundamental effect wind has on the balance of the power system generation. Because wind generation has no fuel costs and low variable operating costs, many analyses of the effects of wind on power systems treat wind as a must-run resource; contributing variability and uncertainty characteristics that are somewhat similar to load. Generation from other resources is adjusted in such a way as to meet the net load after subtracting wind generation. This is sometimes referred to as 'treating wind as negative load'. Figure 2.1 shows a typical week of wind and load for a power system, illustrating netting out the wind. The simplifying assumption that wind can be treated as a load deduction is reasonably valid for systems with relatively small amounts of interconnected wind generation.

The primary effect of wind on other power system generation stems from examining how other generators behave with and without the wind subtracted from the load. Economics dictates that there is a priority order of dispatching generating plants based on their variable costs. Generators with relatively low variable costs (fuel, and operation and maintenance) tend to be operated most of the time, and given the highest priority.

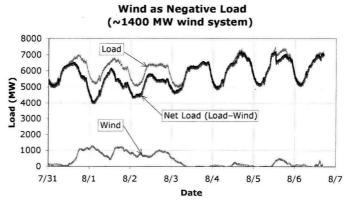
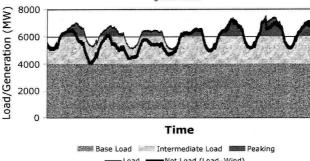


FIGURE 2.1 One week of load and wind on a system with about 1400 MW of wind.

Generators that experience significant savings when not operating will be given lower priority. The prioritized, or 'merit order', dispatch means power plants with the lowest variable costs are operated most frequently, and those with the highest variable costs are operated least frequently. In a generic sense, analysts group generators into three broad categories: peaking, intermediate load, and baseload units. Peaking units have the highest operating costs, baseload units the lowest operating costs, and intermediate load units are in between. These resources are 'stacked up' in their merit order as illustrated in Figure 2.2 to meet customer demand, with baseload generation at the bottom of the stack, intermediate next, and peaking generation on top as needed. The ordering of generating unit dispatch minimizes overall operating costs.

Much of the value of wind power is derived from the savings in operating costs and emissions associated with reducing generation from peaking and intermediate load units, as illustrated in Figure 2.2. Peaking units are usually made up of lower efficiency single-cycle combustion turbines, or highly inefficient fossil-fueled steam boilers. The most expensive power plants to operate are energized with lowest priority in order to keep costs down. To the extent that wind generation causes greater sales or reduced purchases from liquid markets, the savings may alternatively be tied to prevailing market prices at the time the wind generation occurs (saving variable costs on generation from other power systems). The ability to take advantage of markets depends strongly on the market structure and the ability to forecast wind generation ahead of time. Utilities find they may be able to sell some portion of the wind generation into the sub-hourly market or forward (hour-, day-, or week-ahead) markets depending on the availability and accuracy of wind forecasts.


2.2 ROLE OF WIND FORECASTS IN WIND POWER ECONOMICS

The importance of wind forecasts is widely touted, but often poorly understood. Schedules of estimated loads and power generation are

¹ It should be noted that the situation for power systems with hydro resources could be somewhat different. Hydro may be broken into baseload, intermediate load, and peaking components. Savings in energy dispatched from hydro units may accrue as water in reservoirs that may be released at a later time to displace thermal generation at other times, or for market sales to other systems that accomplish the same. In addition, coal plants are generally considered low-variable cost, baseload generation that are not primarily displaced by wind (one study in Texas estimated that each megawatt-hour of wind energy displaced 0.19 megawatt-hours of coal (Cullen, 2008)). This situation could change dramatically if a carbon dioxide penalty (e.g. a tax) is levied on coal plants. In that case, the position of coal in the merit order dispatch could change, resulting in wind energy displacing more coal generation than is currently the case in the USA. Displacement of coal may also become more prevalent at higher wind penetration levels considered in Chapter 14.

Effect of wind is to reduce peaking and intermediate load generation.

Net Load (Load-Wind)

FIGURE 2.2 Resources needed to meet the load without wind (top line) and after taking the wind into account. The difference between the lines represents power generation from other sources that is not needed due to the presence of wind on the system.

developed a day in advance, and improved estimates are provided typically an hour in advance of the operating period, and finalized 15 minutes to 2 hours before the beginning of the operating period. Accurate schedules reduce the need for power systems to maintain the ability to increase or decrease generation due to unaccounted changes in wind output or system demand. Responding to unforecast load or generation is accomplished primarily by especially flexible reserve generating capability. Conversely, variability of wind and load that is reflected in the schedules can be accommodated using the most cost-effective means available. The accuracy of wind forecasts that inform wind schedules is an important factor in determining the level of reserve generation needed, and hence importantly contribute to the value of the wind generation.

Most utilities have experience with forecasting loads hours, days, weeks, and even years ahead. Forecasts for up to a week or two are usually based on weather models and historical behavior of loads. Electric demand is a strong function of temperatures, wind speed, and humidity. Other factors are also important, such as hour of the day, day of the week and year (e.g. weekends or holidays), and industrial load characteristics (e.g. dependence of irrigation loads on time of year and precipitation). Weather models take into account prevailing temperatures, pressures, wind speeds, insolation, ground reflectivity, and other relevant data to predict the movement of air using physics-based equations of motion. These same models are also used to predict wind speed and direction. The data can be translated into power generation using information specific to a wind project, such as power curves and unit availability.