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SERIES EDITOR’S INTRODUCTION

The course of editing this book has taken an unusual path: A change in
authorship as well as editorship took place. My predecessor, Michael
Lewis-Beck, was wise in seeing the value of adding to the series an intro-
ductory title on the generalized linear model. He saw through the editing of
the prospectus and earlier drafts of the manuscript before stepping down as
editor in early 2004. Sadly, George H. Dunteman passed away right after
completing what he thought was a final draft. Further revisions were com-
pleted by Moon-Ho R. Ho, who gallantly took up the challenge and brought
the manuscript to fruition with important additions and revisions to the original
draft.

The outcome variables that social scientists analyze can be continuous or
discrete. In our series, we have many titles that deal with the type of models
represented by the classical linear regression that requires a continuous depen-
dent variable (and a number of crucial assumptions). When the dependent vari-
able is noncontinuous, often the probability of event occurrence is the object
of a statistical model, but it can also be frequency or log frequency. During the
past two decades, various forms of logit and probit (and log linear) models
have become a standard issue in the social scientist’s methods repertoire and
the topic of quite a few titles in the series.

The relation between the two types of models—those for continuous out-
come variables and those for discrete dependent variables—becomes trans-
parent in the framework of the generalized linear model. In the social
sciences, researchers are familiar and comfortable with linear or lineariz-
able independent variables on the right-hand side of the equation, expressed
as a linear combination of x and B. The dependent variable y on the left-
hand side in the two types of models, however, may take on various forms,
including metric, binary, ordinary, multinomial, and count. The random
outcome of y in the two types of models may be distributed according to the
normal, the binomial, the Poisson, the gamma distributions, among others,
and all these distributions belong to the exponential family of distributions.
Once we have made the proper assumption of the random distribution in y
following the exponential form, the remaining task is to specify the link
between the expectation of the random variable y and linear combination of
x and B. This mapping of the expected random outcome variable y to the linear
combination of x and f is part and parcel of the generalized linear model.

So far, we have two titles specifically discussing the generalized linear
model: Gill's Generalized Linear Models: A Unified Approach (No. 134) and
Liao’s Interpreting Probability Models: Logit, Probit, and Other Generalized
Linear Models (No. 101). The former presents the generalized linear model

viii



systematically and slightly more theoretically, and the latter provides a uni-
fied method for interpretation of estimation results from generalized linear
models. The current book, however, has a more humble but nevertheless
more down-to-earth goal: For the rank-and-file social science researchers
who have mastered classical linear regression, how do they move from the
linear regression model to the other type of models for noncontinuous depen-
dent variables without losing sight of the common roots and similarities of
the two types of models? The authors walk the reader through such process
and enlighten the uninitiated about generalized linear models along the way,
thus providing a good addition to the series.
—Tim Futing Liao
Series Editor
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AN INTRODUCTION
TO GENERALIZED
LINEAR MODELS

George H. Dunteman

Moon-Ho R. Ho
Department of Psychology, McGill University,
Montreal, Quebec, Canada

Division of Psychology, Nanyang Technological University,
Singapore

1. GENERALIZED LINEAR MODELS

Generalized linear models, as the name implies, are generalizations of the
classical linear regression model. The classical linear regression model
assumes that the dependent variable is a linear function of a set of indepen-
dent variables, and that the dependent variable is continuous and normally
distributed with constant variance. The independent variables can be continu-
ous, categorical, or a combination of both. Multiple regression, analysis of
variance, and analysis of covariance are examples of classical linear models.
They can all be written in the form y= f; + Z§’=1@Xj + &, where y is the
continuous dependent variable, X;’s are the independent variables, and ¢ is
assumed to be a normally distributed error. The dependent variable y is
decomposed into two components, a systematic component g + Y 5.7: 1Bi X

and an error component ¢. The systematic component is the expected value
of y, E(y), for a given set of values for the X;’s. The expected value of y, E(y),
is the mean of y, i, for a given set of values for the independent variables,
the X;'s; that is, E(y|Xy,.... Xp) =By + Zleﬁjxj. It is a conditional
mean that depends on the values of the X;’s. The goal of regression analysis
is to find a set of independent variables that have high explanatory power as
measured through goodness of fit. This means that we can explain a large part
of the variation in y by a linear combination of the independent variables. If
the regression parameters, the §;’s, are large, then as the values of the X;’s
change from observation to observation, the expected value of y or the condi-
tional mean of y will vary considerably. If this variation in the conditional
mean or predicted value is large relative to the variation in &, then we have a
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Figure 1.1 Linear Regression Model

useful model for predicting future values of y for given values of the inde-
pendent variables and for understanding the relative importance of the dif-
ferent independent variables in explaining the variation in the dependent
variable y. Figure 1.1 shows a simple linear regression model (with By =1
and B; =1.5). We estimate the regression parameters, f;’s, by collecting
measurements of y, X, X5, ..., X, on a random sample of observational
units. For our purposes, the observational units are usually people, but in
other applications the units could be anything, such as trees, cows, or even
rivers. If we index the people by i and the variables by j, then we can estimate
the B;’s by minimizing the error sum of squares
2

n P
Z yi—Bo— Z,Bjxij
i=1 Jj=1

Here, subscript i is added to emphasize the fact that the values of the indepen-
dent variables vary from subject to subject. This method of regression para-
meter estimation is commonly known as ordinary least squares.

This linear regression model has served the social sciences as well as the
other sciences extremely well since its initial development in the 19th century.
It is easily formulated, easy to understand, and the regression coefficients are



easily estimated by ordinary least squares. Because of these factors, it is still in
wide use today across all the sciences. Although it assumes normally distributed
errors, it is robust when the errors are only approximately normally distributed.

Nevertheless, it has become increasingly recognized during the past several
years that the linear regression model has limitations. It assumes that the
dependent variable is continuous or at least quasi-continuous, such as achieve-
ment test scores, measures of personality traits, and so on. It also assumes that
the continuous variable is at least approximately normally distributed and that
its variance is not a function of its mean. Generalized linear models were
introduced by Nelder and Wedderburn (1972) to address those limitations.
Generalized linear models are a family of models developed for regression
models with nonnormal dependent variables.

In many applications, the dependent variable is categorical or consists of
counts or is continuous but nonnormal. An example of a categorical depen-
dent variable is a binary variable that takes on only two discrete values, 0 or 1,
where 1 indicates the occurrence of an event (e.g., dropping out of college)
and 0 the nonoccurrence of an event (e.g., not dropping out of college). The
goal is to model the probability of the occurrence of the event of interest. It
will be shown later that logistic regression, a type of generalized linear model,
is appropriate for this type of data.

An example of a dependent variable involving counts is the number of
drug abuse treatment episodes in a 5-year period for a population of sub-
stance abusers. Again, it will be shown that Poisson regression, another type
of generalized linear model, is appropriate for this situation. In both these
cases, the dependent variable is not continuous and is far from being nor-
mally distributed. Also, 0-1 binary and count variables are nonnegative,
whereas continuous dependent variables in regular regression can take on
both positive and negative values.

An example of a nonnormal continuous distribution that has many appli-
cations is the gamma distribution. The gamma distribution is skewed, takes
on only positive values, and its variance is a function of its mean. It is used
to model a wide variety of dependent variables that can take on only positive
values, such as income, survival time, and amount of rainfall. Models with
gamma distributed dependent variables can be modeled within a generalized
linear model framework.

It should be noted that the independent variables can take on a wide variety
of distributional forms for a given distribution on the dependent variable, and
they are not limited to the same distribution as the dependent variable. For
example, the independent variables associated with a normally distributed
dependent variable can exhibit a wide variety of nonnormal distributions,
such as uniform or multimodal. As mentioned previously, regular regression
assumes that whereas the mean of y varies with the independent variables,



the variation of ¢ about the conditional means remains constant. For binary
variables and count variables, the variation about the conditional mean is a
function of the mean. For binary variables, the conditional mean of the
dependent variables is a probability (p) (e.g., the probability of the occur-
rence of 1, the event), and the variation of the 0’s and 1’s about this mean is
p(1 — p), which is a function of the mean (p). Because p, the mean, varies as a
function of the independent variables, so does the variance of the binary vari-
able. For count variables, the Poisson distribution is frequently used, and for
this distribution the variance is equal to its mean. Therefore, as the condi-
tional mean of the Poisson distribution varies as a function of the independent
variables, so does its variance. Generalized linear models, in this case the
logistic and Poisson regression models, explicitly incorporate the relationship
of the mean and variance through their probability distributions in the formu-
lation of the model and the estimation of its regression parameters.

Classical regression also assumes that the model is linear in the regres-
sion parameters. That is, it is assumed that the expected value or conditional
mean is a linear function of the regression parameters. For example,
E(|X1, X2) =By + B1 X1+ B X2 or even By+ B X1 + P2 X2+ B3 XT +
BsX % + B5X1X,. Note that the second model is linear in the parameters but
nonlinear in the independent variables. In fact, classical linear regression is a
specific case of a generalized linear model in which the conditional mean of
the dependent variable is modeled directly rather than some transformation
of the conditional mean. For other generalized linear models, the conditional
mean cannot be written as a linear function of the regression parameters, but
some nonlinear function of the conditional mean can be written as a linear
function of the parameters; hence the name generalized linear models.

A simple example of a generalized linear model is the Poisson regression
model (Figure 1.2). All the characteristics of a generalized linear model can
be easily seen in this case. Moreover, it is easy to see the contrasts between
this generalized linear model and a classical linear model.

In the case of Poisson regression, the expected value or conditional mean
of the Poisson distributed dependent variable is

r T eﬁo"‘ Z?:x ﬁinJ"

Here, A; is the conditional mean of the Poisson distribution for an individual i.
It is conditional in that the mean depends on the regression parameters, the
B;’s, which are constant, and the specific values of the X;’s, which vary over
the units of analysis (e.g., the individuals). We can compute the conditional
mean A; for individual i by substituting his or her values of the independent
variables, the X ,~j’s, where X; is the value of the jth independent variable for indi-
vidual i. In order to do this, we must have estimated the regression parameters
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Figure 1.2 Poisson Regression Model

(the B;’s), which are unknown constants. How this is done is discussed later.
We need to use the maximum likelihood method instead of least squares.

When the distribution of the dependent variable is nonnormal and its
variance is a function of its mean, least squares estimates are no longer equal
to maximum likelihood estimates as they are for the normal distribution. In
these cases, the likelihood function must be expressed in terms of the appro-
priate probability density to obtain both proper parameter estimates and their
standard errors. Using least squares would result in both erroneous parameter
estimates and their standard errors.

The main point is that the conditional mean is not a linear function of
the B;’s. If we take the natural logarithm of both sides of the Poisson regres-
sion model above, we obtain log,(X;) = By + Zf:]lijij- We have linear-
ized the relationship between the Poisson distributed dependent variable
and the independent variables by performing a nonlinear transformation on
the conditional mean, A (i.e., log,(A)). We shall see that log, () is called
the canonical link function for the Poisson regression model. It transforms
the conditional mean A of the dependent variable such that the transformed
value, log, (), is a linear function of the regression parameters. It is called
canonical because log, (1) is the natural parameter of the Poisson distribution



when it is expressed in exponential form. We shall also see later that the
variance of a Poisson variable is equal to its mean so that if the conditional
mean of the Poisson distribution increases, then so does the conditional
variance associated with the conditional mean.

There are several good books on generalized linear models (Fahrmeir &
Tutz, 1994; Le, 1998; McCullagh & Nelder, 1989; McCulloch, & Searle,
2001), but they usually assume a relatively high level of statistical sophistica-
tion on the part of the reader. This book assumes only basic knowledge of
statistical inference and some familiarity with multiple regression. Knowledge
of elementary calculus and elementary matrix algebra is not assumed,
although they may be helpful in a few sections of the book. Those with little
or no background in these subjects may skip or skim over those sections with
little or no loss of continuity. This book is written in an informal manner and
discusses the relevant statistical concepts in an intuitive manner. Its goals are
to inform the reader about different types of data and allow him or her to
choose the appropriate statistical model for analyzing the data and interpreting
the results. In the appendix, we provide examples of how to use statistical soft-
ware, SAS (SAS Institute, 2002), to fit the generalized models discussed in
this book.

2. SOME BASIC MODELING CONCEPTS

We discuss the fundamental concepts of statistical modeling in the context
of regular multiple regression analysis. It assumes a continuous distribu-
tion for the dependent variable with constant variance for each observation. It
also assumes that the predicted value of y, its conditional mean, is a linear
function of the regression parameters. We will see later that the regular multi-
ple regression model is one of a number of specific generalized linear models
if we assume that the error is normally distributed.

For three independent variables, the model can be written as
vi=PBo+ B1Xi1 + B Xi2 + B3Xi3 +¢&;, where i identifies the observation
that in most applications is a person. It is assumed that &; has mean 0 and
constant variance o2. In addition, it is assumed that &; is uncorrelated with
the independent variables. The systematic component of the model is
Bo+ B1Xi1 + BrXi2 + B3 X3 and is the expected value of y; or the condi-
tional mean on the dependent variable for the ith observation given the
values of X;1, X;2, X;3 for the ith observation. We express this as

E(yi|Xi1, Xi2, Xi3) = pi = Bo + B1 Xi1 + B2 Xi2 + B3 Xii3.

The random component of the model is €;. We can see that as the independent
variables vary, the conditional mean, p;, varies. The associated regression



