Introductionto .

=, Dynamic -

® +®
0 «®
[Q ®
0960
o rogramuung os:
990 0 . .
® 0
® o ®e 0
® «® Leon Cooper and Mary W Cooper T
®e Southern Methodist Umyerslfy Dallas, Texas

~ International Series in Modern Applied Mathematics
and Computer Science Volume |

Pergamon Press

Introduction to Dynamic
Programming

by

LEON COOPER

and

MARY W. COOPER'
Southern Methodist University, Dallas, Texas, USA

PERGAMON PRESS

OXFORD - NEW YORK - TORONTQ - SYDNEY - PARIS - FRANKFURT"

UK.

U.S.A.
‘CANADA
AUSTRALIA
FRANCE

FEDERAL REPUBLIC
‘OF GERMANY

Pergamon Press Ltd., Headington Hill Hall,

Oxford OX3 0BW, England

Pergamon Press Inc., Maxwell House, Fairview Park,
Elmsford, New York 10523, U.S.A.

Pergamon of Canada, Suite 104, 150 Consumers Road,
Willowdale, Ontario M2J 1P9, Canada

Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544,
Potts Point, N.S.W. 2011, Australia

Pergamon Press SARL, 24 rue des Ecoles,

75240 Paris, Cedex 05, France

Pergamon Press GmbH, 6242 Kronberg-Taunus,
Hammerweg 6, Federal Republic of Germany

Copyright © 1981 Pergamon Press Ltd.

All Rights Reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted
in any form or by any means: electronic, electrostatic,
magnetic tape, mechanical, photocopying, recording or
otherwise, without permission in writing from the publisher

First edition 1981

British Library Cataloguing in Publication Data
Cooper, Leon

Introduction to dynamic programming. — (Pergamon
international library: international series in modern
applied mathematics and computer science; vol. 1).
1. Dynamic programming

I. Title

519.7°03 T57.83 79-42640

ISBN 0-08-025065-3 Hardcover

ISBN 0-08-025064-5 Flexicover

‘Printed in Hungary by Franklin Printing Hoyse

Preface

THE purpose of this book is to present a clear and reasonably self-contained introduc-
tiontodynamicprogramming. Wehavetried tosteera middle ground between presentation
of the underlying mathematical ideas and results, and the application of these ideas to
various problem areas. Consequently, there is a large number of solved practical prob-
lems as well as a large number of computational examples to clarify the way dynamic
programming is used to solve problems. .

This book is definitely introductory and makes no claim to cover the whole subject;
if an attempt had been made to approach completeness the book would be many times lar-
ger than it is. However, We hope that it will give a good insight into the fundamental
ideas of the subject, a good working knowledge of the relevant techniques and an ade-
quate starting-point for further study into those regions of the subject not dealt with
here.

A consistent notation has been applied throughout for the expression of such quanti-
ties as state variables, decision variables, etc. It is felt that this should be helpful to the
reader in a field where the notational conventions are far from uniform. In Section 6.9
a new application is presented and in Section 7.7 a new method for state dimensionality
is presented.

The book should be suitable for self-study or for use as a text in a one-semester course
on dynamic programming at the senior or first-year, graduate level for students of
mathematics, statistics, operations research, economics, business, industrial engineer-
ing, or other engineering fields.

We are indebted to the many comments of students in a course on dynamic program-
ming who used this book in the form of preliminary lecture notes.

Southern Methodist University LeoN COOPER
Dallas MAry W. CoOPER

Chapter 1.

Contents

Introduction

. Optumization

. Separable Functions

. Convex and Concave Functions

. Optima of Convex and Concave Functions
. Dynamic Programming

Dynamic Programming: Advantages and Limitations

. The Development of Dynamic Programming

Exercises—Chapter 1

Chapter 2

Some Simple Examples

. Introduction

The Wandering Applied Mathematician

. The Wandering Applied Mathematician (continued)

A Problem in “Division®’

. A Simple Equipment Replacement Problem

Summary

Exercises—Chapter 2

Chapter 3
3.1.

32.
33.

34

Functional Equations: Basic Theory

Introduction

Sequential Decision Processes

Functional Equations and the Principle of Optimahty

The Principle of Optimality—Necessary and Sufficient Conditions

Exercise—Chapter 3

Chapter 4

One-dimensional Dynamic Programming: Analytic Solutions

. Introduction
. A Prototype Problem
. Some Variations of the Prototype Problem

Some Generalizations of the Prototype Problem
Some Generalizations
A Problem in Renewable Resources

. Multuplicative Constraints and Functions

Some Varnations on State Functions
A Minimax Objective Function

Exercises—Chapter 4

vii

[N SN S

viii Contents

Chapter 5.

510

One-dimensional Dynamic Pro'gramming: Computational Solutions

Introduction

A Prototype Problem

An Example of the Computational Process

The Computational Effectiveness of Dynamic Programming

An Integer Nonlinear Programming Problem

Computation with Continuous Variables

Convex and Concave ¢;(x;)

Equipment Replacement Problems

Some Integer Constrained Problems

A Deterministic Inventory Problem—Forward and Backward Recursion

Exercises—Chapter 5

Chapter 6.

610
6.11.

Muldtidimensional Problems

Introduction

A Nonlinear Allocation Problem

A Nonlinear Allocation Problem with Several Decision Variables
An Equipment Replacement Problem

Some Investment Problems

A Stochastic Decision Problem

The Traveling Salesman Problem

A Multicomponent Reliability Problem

A Problem in Product Development and Planning
A Smoothing Problem

Operation of a Chemical Reactor

Exercises—Chapter 6

Chapter 7.

Reduction of State Dimensionality and Approximations

. Introduction

. Lagrange Multipliers and Reduction of State Variables
. Method of Successive Approximations

. Approximation in Policy and Function Space

. Polynomial Approximation in Dynamic Programming
. Reduction of Dimensionality and Expanding Grids

. A New Method for Reduction of Dimensionality

Exercises—Chapter 7

Chapter 8.

Stochastic Processes and Dynamic Programming

. Introduction

. A Stochastic Allocation Problem—Discrete Case

. A Stochastic Allocation Problem~—Continuous Case

. A General Stochastic Inventory Model

. A Stochastic Production Scheduling and Inventory Control Problem
. Markov Processes

. Markovian Sequential Decision Processes

8.8.

The Policy Iteration Method of Howard

Exercises—Chapter 8

Chapter 9.

9.1.
9.2.
93.

Dynamic Programming and the Calculus of Variations

Introduction
Necessary and Sufficient Conditions for Optimality
Boundary Conditions and Constraints

127

127
127
132
135
137

142
146
148
150
151
153

155

155
155
162
166
173
178
181
187

189

189
192
193
197
199
201
205

216

217

217
219
225

Contents

9.4, Practical Difficulties of the Calculus of Variations
9.5. Dynamic Programming in Variational Problems
9.6. Computational Solution of Variational Problems by Dynamic Programming
9.7. A Computational Example
9.8. Additional Variational Problems
Exercises—Chapter 9

Chapter 10. Applications of Dynamic Programming

10.1. Introduction

10.2. Municipal Bond Coupon Schedules

10.3. Expansion of Electric Power Systems

10.4. The Design of a Hospital Ward

10.5. Optimal Scheduling of Excess Cash Investment
10.6. Animal Feedlot Optimization

10.7. Optimal Investment in Human Capital

10.8. Optimal Crop Supply

10.9. A Style Goods Inventory Model

Appendix. Sets, Convexity, and r-Dimensional Geometry

A.1. Sets and Set Notation
A.2. n-Dimensional Geometry and Sets
A.3. Convex Sets

References

Index

231
233
237
240
246
249

251

251
251
254
256
260
263
271
273
275

279

279
281
284

289

Chapter 1

Introduction

1.1. Optimization

Dynamic programming is a particular approach to optimization. By optimization
what we usually mean is finding the best solution to some problem from a set of alter-
natives. In this book we shall consider “problems” which can be quantitatively formu-
lated. Hence we shall deal with mathematical models of situations or phenomena which
exist in the real world. By a mathematical model, we mean that we have abstracted or
isolated from an incomparably richer background, certain salient features which can be
described in the language of mathematics. If we have a valid isolate, i.e., the charac-
teristics that we have ignored have negligible effects, then we can expect that the solu-
tion to our model will provide a deeper understanding and a reasonably accurate descrip-
tion of the phenomenon under study. The generation of suitable models in the sense
just described is more of an art than an exact science. Nevertheless, it is a widely prac-
ticed art and one which is increasingly successful. The development of powerful compu-
tational tools, i.e., digital computers, has had a very strong impact on the impetus to
develop increasingly complex and sophisticated mathematical models.

Let us now consider the basic components of any mathematical optimization model.
These are:

1. Variables (or decision variables or policy variables or independent variables).
These are the quantities or factors that can be manipulated to achieve some desired
outcome or objective. Most often variables will be represented as x;, x,, ..., X, or the
vector of variables x = (xy, Xy, ..., x,). We will often speak of x = (x;, x,, ..., x,) as
a point in an n-dimensional Euclidean space (see Appendix).

2. Objective function (or return function or profit function). This is a measure of the
effectiveness or the value or utility which is associated with some particular combination
of the variables. In many instances it is some single-valued function of the variables,
ie, z =f(xy, Xy ..., X,). This is the function that is to be optimized (maximized or
minimized). In most instances, the function z = f(x) is a known function. However,
there are optimization problems in which this is not the case. In these problems, usually
considered in the calculus of variations (and also in a different way in dynamic program-
ming), the function itself is not known and is the solution to the optimization problem.
As an example of such problems, we might minimize some integral I, where

b
I= f F(x,y,y")dx (1.1.1)
(1

1

2 Introduction to Dynamic Programming

In (1.1.1) y = f(x) is the particular function (and is to be determined) that will mini-
mize I and F(x, y, ') is some known function of x, y, and ¥ = dy/dx. Hence there are
two distinct kinds of objective functions. In the first kind we seek values of x = (x, . .. x,)

that maximizes or minimizes f(x). In the second kind, we seek, as our unknown, a
b

function y = f(x) that maximizes or minimizes a functional, I = f F(x, y, y')dx. There
a

are more complex examples of this type which will be dealt with later.

3. Constraints (or feasibility conditions). These are algebraic equations or inequalities
or in some cases differential equations, that the variables must satisfy, in addition to
providing a maximum or minimum value of the objective function. Usually constraints

can be represented as

h,-(xl, X2 ¢4y x,,) =0

h(xy, xa, ..., x5)=0 i=12...,m (1.1.2)

hi(xh X2y <0y xn) =0
where for a given 7, only one of the three may hold. In some instances, notably in varia-
tional problems, differential equation constraints may also be present. For example, we
might wish to minimize

b
10) = [Fes) d
a

subject to ‘ & = h(x, y) (1.1.3)
dx
We)=C

In summary, the general variable optimization problem is to
maximizet | y=fx)
subject to h(x){=, =, =}0 (=12 ...,m 1.1.4)
We shall not consider general variational problems at this point. Details of the applica-

tion of dynamic programming to variational problems will be presented in a later chap-
ter.

1.2. Separable Functions

An important criterion which is often used to characterize functions appearing in
either the objective function or the constraints of a mathematical optimization (or
mathematical programming, as it is usually called) problem is whether or not the func-
tions are separable. A separable function is one in which the function consists of a sum
of functions of a single variable, i.e.,

SX) = filx)+fe(xe)+ ... +fu(xn) (1.2.1)

t It should be apparent that min[f(x)] = —max[~f(x)]. Hence we can restrict our concerns to
either maximization or minimization problems.

Introduction 3

There are other forms of “separability” which will be dealt with in subsequent chapters.
The form shown in (1.2.1) is probably the most often used in dynamic programming

problem formulations.
At first glance, it would seem that the form shown in (1.2.1) restricts one unduly,

since many important functions are not separable. For example,
S (x1, X2) = 3x1%2-+2x1 sin xa

is clearly not in separable form. However, it is not difficult to see that most (but not all)
functions can be transformed into separable form by introducing auxiliary variables
and additional constraints. In [2] it is shown that the method for separating any “fac-
torable” function (defined below) consists of two basic steps which are repeatedly used
until one obtains a separable function. These two steps are:

(1) Replace any product term of the form

hi(x1) ho(x2) by yi—y3
and add the constraints
hi(x1) = y1—ya, ha(xs) = y1+ys

(2) Replace any term of the form
H(h(x)) by H(y)
and add the constraint
h(x) =y

The class of nonlinear functions which can be separated by repeated use of the above
steps comprises what have been called factorable functions. A factorable function is a
function of n variables which is generated by first composing (adding or multiplying)
functions of a single variable, transforming those functions, composing those, ...,

etc., a finite number of times.
As an example of how this process operates, suppose we wished to put the following

problem in separable form:
maximize xjel+x)? (1.2.2)

{xh xl}
Applying step (1) we have
max yi—)3
{x1, x5, 31, ¥2}
subject to Y1i—Ya2 = X1 1.3
Yi+ys = eatx)? (12.3)

The second constraint in (1.2.3) is still not in separable form so we now apply step (2)
to obtain
max y}—y}
{x1 %30 Y1, Y2 Y3}
subject to Yi—Yy2 = X1 124
Y1ty = e

(x1+x2)? = y3

4 Introduction to Dynamic Programming

The last constraint in (1.2.4) is nonseparable so we reapply step (2) to obtain

max yi—y}
{215 X2y Y1, Y2 Y30 Va}
subject to Yy1—Y2 = X1
yitys = e (1.2.5)
Yi=1s
X1+ X2 = ya

Equation (1.2.5) is now a mathematical programming problem in completely separable
form and is completely equivalent to (1.2.2).

1.3. Convex and Concave Functions

There is an important property of certain functions which is related to the existence
of minima and maxima. This property is known as convexity and its opposite as con-
cavity. In Fig. 1.3.1(a) we have shown a convex function of a single variable. Intuitively,

x) Mx)

([

Xpm =

) SO
N
>
'3(.———.—_
>

{a) (b)
c°““e*
Convex Concave
C
%%

(c) (d)

Fic. 1.3.1. Convex and concave functions of a single variable.

as Fig. 1.3.1(a) shows, a function of a single variable is convex if a line segment drawn
between any two points on its graph falls entirely on or above the graph. Similarly, a
function is concave if a line segment drawn between any two points on its graph falls
entirely on or below the graph. Such a function is shown in Fig. 1.3.1(b). If the line
segment falls entirely above (below) the graph the function is said to be strictly convex
(strictly concave).

Formally, a function f(x) of asingle variable x is said to be convex over some interval
in x, if for any two points x1, xa in the interval and for all 4, 0 = A << 1,

SlAxi+(1—2)x2) < Af (x1)+(1—2) f(x2) (1.3.1)

Introduction 5

Similarly, a function f(x) is said to be concave over some interval in x, if for any two
points x1, x» in the interval and for all 2, 0 < A = 1,

SlAx1+(1—Ax2] = Af (x1)+(1—4) f(x2) (1.3.2)

It should be clear from these definitions that if f(x) is convex, —f(x) is concave and vice
versa. It will be seen that (1.3.1) and (1.3.2) correspond to the definition given in terms
of the graph of a function.

We can generalize the definitions of convexity and concavity just given to the case
of functions of several variables. A function f(x) is convex over some convex set! X in E*
if for any two points X; and X2 in Xandforall 4,0 = A <1,

SI2x14+ (1= xe] =< Af (x)+(1—4) f(x2) (1.3.3)

Similarly, a function f(x) is concave over some convex set X in E” if for any two points
xjand xzin Xand forall 4, 0 <=1 =<1,

JTAx1+ (1= 2)x3] & Af (1) +(1—2) f(x2) (1.3.4)

For a function of a single variable, a function was convex if the line segment joining
any two points on its curve fell entirely on or above the curve. A similar interpretation
can be given to (1.3.3). A function z = f(x) is a hypersurface in (n+ 1)-dimensional
space. It is convex if the line segment which connects any two points (X1, z1) and (X3, z2)
on the surface of this hypersurface lies entirely on or above the hypersurface.

Some properties relating to convex and concave functions that we shall have occasion
to refer to in subsequent chapters are as follows. Proofs of these assertions can be found
in Cooper and Steinberg [1].

PropOSITION 1.3.1. If the functions hi(x), k = 1,2, ..., s are convex functions over
5
Some convex set X in E", then the function h(x) = Y h/(X) isalso a convex function
k=1 '

over X.

What Proposition 1.3.1 asserts is that the sum of convex functions is also a convex
function over some convex set. For a function of a single variable, it is clearly true.
The convex set is the x axis (or some portion of it) and, as an example, we show in Fig.
1.3.2 the sum of two convex functions /i(x) = x? and Ax(x) = 2x over 0 < x < 4.

Just as the sum of convex functions is a convex function, it is also true that the sum of
concave functions over a convex set is a concave function. Hence, this leads us to:

PROPOSITION 1.3.2. If the functions hi(X), k = 1,2, ..., s are concave functions over
5
some convex set X in E", then the function h(x) = Y h(X) is also a concave function.
k=1

A result of some importance is the following:

PropoSITION 1.3.3. If h(x) is a convex function aver the nonnegative orthant of E”,
then if W = {x| h(X) = b, x = 0} is not empty, W is a convex set.

t See the Appendix.

6 Introduction to Dynamic Programming

|
|
|
|
I
4 5
x

Fi1G. 1.3.2. Sum of convex functions.

A simple example of Proportion 1.3.3 is shown in Fig. 1.3.3. We have chosen A(x) =
2x3+3x;. It is easily verified that this is a convex function. If we examine the set
W = {x|h(x) = 12, x = 0}, we see that it is a convex set.

2x2 +3x5 =12

A
Fic. 1.3.3. h(x) = 12.

In a similar fashion, we can show the following:

PROPOSITION 1.3.4, If h(x) is a concave function over the nonnegative orthant of E",
then if W = {x|h(X) =< b, x = 0} is not empty, W is a convex set.

1.4. Optima of Convex and Concave Functions

Generally, if we are seeking the maximum or minimum of some arbitrary function
z = f(x) and we have no particular characterization of the function, we can only hope
to find a local maximum or minimum with any existing methods. This is true even if
we know as much about the function as that it is both continuous and differentiable in
the region of interest. However, if the function to be maximized or minimized over some
convex region is either convex or concave, then there is considerably more information
available to us. In addition, great simplifications in computational procedures can often
be made. To this end we shall state two results of great importance. Proofs of these pro-
positions can be found in [1].

Introduction 7
ProposITION 1.4.1. Let h(x) be a convex function over a closed convex set X in E".
Then any local minimum of h(x) in X is also the global minimum of h(x) in X.

The importance of Proposition 1.4.1 is very great. It gives us a condition under which
we do not need to be concerned about the presence of many local maxima or minima.

z=324

N

Ax +3x,512

i
Xxb, 5

F1G. 1.4.1. Optimal solution on constraint boundary.

X\ =X,=2

An example illustrating this result is shown graphically in Fig. 1.4.1. The function
z = (x1—3)?>+(x2—3)2 is a convex function. The constraints

4X1+3XZ<12
X1—Xg =< 2
1.4.1)
v © (14.1)

Xx3= 0

generate a convex set as is seen in Fig. 1.41. Hence, we know immediately that the solu-
tion we have obtained, i.e., (x1, x3) = (1.56, 1.92) and z = 3.24, is a globally minimum
solution. In this case it is also unique.

In a similar fashion one can show a corresponding result for concave functions.

PROPOSITION 1.4.2. Let i(X) be a concave function over a closed convex set X in E™.
Then any local maximum of h(x) in X is also the global maximum of h(X) in X.

Propositions 1.4.1 and 1.4.2 deal with the case of minimizing a convex function or
maximizing a concave function over a convex set. Let us now consider the reverse case,
i.e., maximizing a convex function or minimizing a concave function over a convex set.
This gives rise to the following results.

PROPOSITION 1.4.3. Let X be a closed convex set bounded from below and let h(x) be a
convex function over X in E". If h(x) has global maxima at points x° with |x°| finite, then
one or more of the x° are extreme points of X.

2

8 Introduction to Dynamic Programming

PROPOSITION 1.4.4. Let X be a closed convex set bounded from below and let h(X) be a
concave function over X in E". If h(x) has global minima at points x° with |X"| finite, then
one or more of the X° are extreme points of X.

What these results tell us is that we can be sure that the global maximum or minimum
will be at an extreme point of the convex set of feasible solutions. Since the number of
extreme points is often finite, this often results in computationally feasible methods for
examining some subset of this finite set.

An example of Proposition 1.4.4 is the following problem:

max z = x3+x3
_x1+x2 = 4 (1 .4.2)
X1+x2 <12
X1, x2= 0
The problem of (1.4.2) is shown in Fig. 1.4.2. We can see that the global maximum occurs

at an extreme point, designated A, of the convex set generated by the constraints of
{1.4.2). At this point the maximum value z = 144 is obtained.

FiG. 1.4.2. Extreme point solution.

1.5. Dynamic Programming

Dynamic programming is a particular “approach” to optimization. We use the word
“approach” advisedly because dynamic programming is not a particular algorithm in
the sense that Euclid’s algorithm is a well-defined procedure for finding the greatest
common divisor of two integers or in the sense that Dantzig’s simplex algorithm is a
well-defined set of rules for solving a linear programming problem. Dynamic program-
ming is an approach to solving certain kinds of optimization problems, some of which

Introduction 9

can, in principle, be solved by other procedures. Dynamic programming is a way of
looking at a problem which may contain a large number of interrelated decision vari-
ables so that the problem is regarded as if it consisted of a sequence of problems, each of
which required the determination of only one (or a few) variables. Ideally, what we seek
to do is, in effect, substitute solving » single variable problems for solving one n variable
problem. Whenever this is possible, it usually requires very much less computational
effort. Solving » smaller problems requires a computational effort which is proportional
to n, the number of single variable problems if each problem contains one variable.
On the other hand, solving one larger problem with # variables usually requires a com-
putational effort which is very roughly proportional to a”, where a is some constant.
Hence the desirability of transforming or considering an #-dimensional problem as n
one-dimensional problems.

The principle or point of view that enables us to carry out the transformation we have
just discussed is known as the principle of optimality. It was first enunciated by Bellman
{3]. It has an intuitively obvious basis (Bellman’s justification consists of the single
statement, “A proof by contradiction is immediate”). We shall have more to say about
this later. The principle of optimality is:

An optimal policy has the property that whatever the initial state and the initial deci-
sion are, the remaining decisions must constitute an optimal policy with respect to the
state which results from the initial decision.

A simpler rendition of this principle, which shows its intuitive character more trans-
parently, consists of the statement : Every optimal policy consists only of optimal subpolicies.

It is important, even if only vaguely and intuitively at this point, to understand what
the above statements of the principle of optimality mean. Consider the following optimiza-
tion problem. An investor has a fixed sum of money, D dollars, which can be invested
in five different investment opportunities (stocks, bonds, land, etc.). In actual fact he
wishes to invest this money at the same time (the present), assuming that he has a predic-
tion of what kind of return he can expect from each investment. Since each investment
has certain stipulations that must be met (minimum or maximum amounts required,
deferred earnings, different tax rates, etc.), he wants to know how much of his total D
should he invest in each of the five investments so as to maximize the total return from
all the investments.

One approach to solving such a problem is to generate all possible combinations of
the five investments and see which one provides the largest return. This approach is
called fotal enumeration and is generally not practical, even with computers, for problems
with a realistic number of variables. If we assume that the amount to be invested in
any of the investment opportunities is fixed, the decision that must be made is to invest
or not invest. Even for this simplified case we have one way to invest in all of the in-
vestment opportunities, five ways to invest in four of them, ten ways to invest in three
of them, ten ways to invest in two of them, and five ways to invest in one, i.e., the total
number of ways to invest in five investment opportunities (for a fixed investment amount

)+ (0) -

2%

10 Introduction to Dynamic Programming

For 20 investments we would have to evaluate 1,048,575 combinations. The number
increases very rapidly with the number of investments, and hence total enumeration
rapidly becomes impractical, even on a computer.

What we shall do in dynamic programming is examine only a very small subset of the
total number of combinations. However, the subset is guaranteed, under the right con-
ditions, to contain the optimal solution. Hence we shall find this optimal solution. Let
us now return to our five-investment problem and consider the dynamic programming
approach. Even though all investments are to be made at one time, we shall pretend that
the investment decisions are made in some order. What this means is that we invest some
amount [, in investment 1, amount I, in investment 2, etc. The only restriction that we
have is that the sum of I1+ I+ Is+ I+ Is = D and that the investments are nonnegative
amounts. Now let us apply the principle of optimality. What it says is that no matter
how much of the total amount D has been spent on the first k£ investments, the remaining
money must be optimally distributed among the remaining S5-k investments. Let us
now apply this principle.

Suppose we had numbered the investments 1 through 5 as indicated above. If we have
already spent a certain amount of the money on the first four investments, then whatever
remains will be invested in the fifth investment opportunity. Hence no decision is made
here. Let us now consider how much should be invested in ;. Here we make a decision
but it is a very simple decision. It involves deciding how much to invest in I; and how
much to save for I;. This involves a decision involving only one variable, i.e., how much
to invest in I;. Let us now consider how much to invest in /3. Again we are involved in
a single variable decision process, i.e., how much to invest in I3 and how much to save
for the combined investments in I; and ;. This analysis continues for I and Iy. In brief,
the decision maker has to make five simple one-variable decisions instead of one complex
five-variable decision. What we are saying when we make a decision is, e.g., that when
we decide how much to invest in Is, no matter how much we invest in I; and I,, the
amount we invest in I3 must be optimal with respect to the remaining capital. Since we
do not yet know what we shall invest in I, and I, the optimal investment and return
from I3 must be determined for all feasible amounts remaining to be invested. The
details of how this is done will be discussed in the next chapter.

1.6. Dynamic Programming: Advantages and Limitations

We have already alluded to one of the main advantages of dynamic programming.
That is, that when we use dynamic programming, we transform a single n-dimensional
optimization problem into n one-dimensional optimization problems which can be
solved one at a time. The classical extremum methods of analysis cannot do this.

A second extremely important advantage of dynamic programming over almost all
other extant computational methods, and especially classical optimization methods, is
that dynamic programming determines absolute (global) maxima or minima rather than
relative (local) optima. Hence we need not concern ourselves with the vexing problem
of local maxima and minima.

