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TO THE INSTRUCTOR

The attributes and philosophy of this book are best described by giving a
running synopsis of each of the six chapters. This summary is accompanied by
open expressions of my pedagogical preferences. Like most authors, I tend to
regard these not as idiosyncrasies, but as the only reasonable way to do things!
If you disagree in spots, I hope you will attribute this lack of modesty to an excess of
enthusiasm. an occupational hazard of those with the effrontery to write books.

The contents of Chapter 1 are often called “*precalculus,”” and are in fact just
what that term implies, namely, material that ought to be at one’s mathematical
fingertips before attempting the study of calculus proper. Opinions differ as to what
such a background chapter should contain. Some authors cannot wait to get on with
the main show, even at the risk of talking about derivatives to students who are still
struggling with straight lines, while others seem unwilling to venture into the heart-
land of calculus without a year’s supply of mathematical rations. I have tried to
strike a happy medium by travelling light, but well-equipped. Thus there is a brief
section on sets, a larger one on numbers, a little bit on mathematical induction, and
quite a lot on inequalities and absolute values, two topics that always seem to give
students trouble despite their precalculus character. There is a whole section on
intervals, both finite and infinite. The last three sections of the chapter administer
a modest dose of analytic geometry, with the emphasis on straight lines and their
equations. It should not take long to bring all the students up to the mathematical
level of Chapter 1, regardless of their starting points, and those few who are there
already can spend their spare time solving extra problems while the others catch up!

The class is now ready to attack Chapter 2, and with it the study of differential
calculus. The chapter begins with a rather leisurely and entirely concrete discus-
sion of the function concept. It is my belief that many books adopt too abstract an
approach to this important subject. Thus I do not hesitate to use terms like **vari-
able’” and ‘“‘argument,’’ which some may regard as old-fashioned, relegating the
mapping and ordered pair definitions of function to the problems. At the same
time, I find this a natural juncture to say a few words about functions of several
variables. After all, why should one have to wait until the very end of the book to
write a simple equation like F(x,y) = 0? And what’s wrong with a few examples of
nonnumerical functions, which crop up all the time in the social sciences? While
still in the first three sections of Chapter 2, the student encounters one-to-one func-
tions and inverse functions, and then composite functions and sequences after
specializing to numerical functions of a single variable. Graphs of equations and
functions are treated in terms of solution sets, with due regard for parity of func-
tions and its consequences for the symmetry of their graphs.

Having mastered the concept of function, in all its various manifestations,
the student now arrives at Sec. 2.4, where derivatives and limits are introduced
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Vi To the Instructor

simultaneously. 1 am of the opinion that the novice can hardly develop any re-
spect for the machinery of limits, without first being told that limits are needed to
define derivatives. Here the development of the individual’s understanding must
recapitulate the actual historical evolution of the subject. For the same reason, I
feel that no time should be wasted in getting down to such brass tacks as difference
quotients, rates of change, and increments. Moreover, after defining the tangent to
acurve, I find it desirable to immediately say something about differentials. This is
a small price to pay for the ability to motivate the ubiquitous *‘d notation,’” and
differentials have many other uses too (for example, in Secs. 4.6 and 6.2).

It is now time for the student to learn more about limits. This is done in Sec.
2.6, where a number of topics are presented in quick order, namely, algebraic
operations on limits, one-sided limits, the key concept of continuity, algebraic
operations on continuous functions, and the fact that differentiability implies con-
tinuity. Armed with this information, one can now become a minor expert on dif-
ferentiation, by mastering the material in Secs. 2.7 and 2.8. After establishing the
basic differentiation formula (x")' = rx™"! for r a positive or negative integer, |
authorize the student to make free use of the same formula for r an arbitrary real
number. Why waste time justifying special cases when the **master formula’’ itself
will be proved once and for all in Sec. 4.4? (However, in a concession to tradition,
the validity of the formula for r a rational number is established in the problems,
in the usual two ways.) Following a brief discussion of higher derivatives, the
student arrives next at the rule for differentiating an inverse function and the all-
important chain rule. Unlike most authors, I use a proof of the chain rule which com-
pletely avoids the spurious difficulty stemming from the possibility of a vanishing
denominator, and which has the additional merit of generalizing at once to the case
of functions of several variables (see Sec. 6.3). The method of implicit differentia-
tion is treated as a corollary of the chain rule, and I do not neglect to discuss what
can go wrong with the method if it is applied blindly. Chapter 2, admittedly a long
one, closes with a comprehensive but concise treatment of limits of other kinds,
namely, limits involving infinity, asymptotes, the limit of an infinite sequence, and
the sum of an infinite series. Once having grasped the concept of the limit of a func-
tion at a point, the student should have little further difficulty in assimilating these
variants of the limit concept, and this seems to me the logical place to introduce
them.

In Chapter 3 differentiation is used as a tool, and the book takes a more prac-
tical turn. I feel that the concept of velocity merits a section of its own, as do related
rates and the concept of marginality in economic theory. It is then time to say more
about the properties of continuous functions and of differentiable functions, and I
do sointhat order since the student is by now well aware that continuity is a weaker
requirement than differentiability. The highly plausible fact that a continuous image
of a closed interval is itself a closed interval leads to a quick proof of the existence
of global extrema for a continuous function defined in a closed interval, with the
intermediate value theorem as an immediate consequence. The connection be-
tween the sign of the derivative of a function at a point and its behavior in a neigh-
borhood of the point is then used to prove Rolle’s theorem and the mean value
theorem, in turn. With the mean value theorem now available, I immediately ex-
ploit the opportunity to introduce the antiderivative and the indefinite integral,
which will soon be needed to do integral calculus.

The chapter goes on to treat local extrema, including the case where the func-
tion under investigation may fail to be differentiable at certain points. Both the
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first and second derivative tests for a strict local extremum are proved in a straight-
forward way, with the help of the mean value theorem. The next section, on con-
cavity and inflection points, is somewhat of an innovation, in that it develops a
complete parallelism between the theory of monotonic functions and critical points,
on the one hand, and the theory of concave functions and inflection points, on the
other. The chapter ends with a discussion of concrete optimization problems, and
the three solved examples in Sec. 3.8 are deliberately chosen to be nontrivial, so
that the student can have a taste of the “‘real thing.”’

It is now Chapter 4, and high time for integral calculus. Here I prefer to use
the standard definition of the Riemann integral, allowing the points ¢; figuring in
the approximating sum o to be arbitrary points of their respective subintervals.
Students seem to find this definition perfectly plausible, in view of the interpretation
of o as an approximation to the area under the graph of the given function. Once the
definite integral is defined, it is immediately emphasized that all continuous func-
tions are integrable, and this fact is henceforth used freely. After establishing a few
elementary properties of definite integrals, I prove the mean value theorem for
integrals and interpret it geometrically. Itis then a simple matter to prove the funda-
mental theorem of calculus. Next the function Inx is defined as an integral, in the
usual way, and its properties and those of its inverse function e¢* are systematically
explored. The related functions log,x, a* and x" are treated on the spot, and the
validity of the formula (x”)" = rx"~! for arbitrary real r is finally proved, as promised
back in Chapter 2. The two main techniques of integration, namely, integration by
substitution and integration by parts, are discussed in detail. The chapter ends
with a treatment of improper integrals, both those in which the interval of integra-
tion is infinite and those in which the integrand becomes infinite.

There are various ways in which integration can be used as a tool, but foremost
among these is certainly the use of integration to solve differential equations. It
is for this reason that I have made Chapter 5 into a brief introduction to differential
equations and their applications. All the theory needed for our purposes is de-
veloped in Sec. 5.1, both for first-order and second-order equations. The next sec-
tion is then devoted to problems of growth and decay, a subject governed by simple
first-order differential equations. The standard examples of population growth,
both unrestricted and restricted, are gone into in some detail, as is the topic of
radioactive decay. The last section of this short chapter is devoted to problems of
motion, where second-order differential equations now hold sway. Inclusion of
this material may be regarded as controversial in a book like this, but I for one do
not see anything unreasonable in asking even a business or economics student to
devote a few hours to the contemplation of Newton’s mechanics, a thought system
which gave birth first to modern industrial society and then to the space age. In any
event, those who for one reason or another still wish to skip Sec. 5.3 hardly need my
permission to do so.

The last of the six chapters of this book is devoted to the differential calculus
of functions of several variables. Here my intent is to highlight the similarities with
the one-dimensional case, while not neglecting significant differences. For example,
this is why I feel compelled to say a few words about the distinction between dif-
ferentiable functions of several variables and those that merely have partial deriva-
tives. However, I do not dwell on such matters. It turns out that much of the theory
of Chapters 2 and 3 can be generalized almost effortlessly to the n-dimensional
case, without doing violence to the elementary character of the book. In particular,
as already noted, the proof of the chain rule in Sec. 6.3 is virtually the same as the
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one in Sec. 2.8. Chapter 6 closes with a concise treatment of extrema in n dimen-
sions, including the test for strict local extrema and the use of Lagrange multipliers
to solve optimization problems subject to constraints. I stop here, because unlike
some authors I see no point in reproducing the standard examples involving indif-
ference curves, budget lines, marginal rates of substitution, and the like, to be
found in every book on microeconomic theory. I conceive of this book as one
dealing primarily with the common mathematical ground on which many subjects
rest, and the applications chosen here are ones which shed most light on the kind of
mathematics we are trying to do, not those which are most intriguing from other
points of view.

The idea of writing this book in the first place was proposed to me by John S.
Snyder, Jr. of the W. B. Saunders Co. Without his abiding concern, I find it hard to
imagine that the book would ever have arrived at its present form. In accomplishing
a total overhaul of an earlier draft, I was guided by helpful suggestions from a whole
battery of reviewers, notably, Craig Comstock of the Naval Postgraduate School,
John A. Pfaltzgraff of the University of North Carolina, J. H. Curtiss of the Uni-
versity of Miami, Carl M. Bruns of Florissant Valley Community College, David
Brown of the University of Pittsburgh, and Maurice Beren of the Lowell Tech-
nological Institute. The last of these reviewers played a particularly significant
role in my revision of Chapter 1. I would also like to thank my friend Neal Zierler
for checking all the answers to the problems in the first draft of the book, and my
copy-editor Lloyd Black for his patience in dealing with the kind of author who
keeps reading proof, looking for trouble, until it is finally taken away from him
once and for all. It has been a pleasure to work with all these fine people.



TO THE STUDENT

~ Calculus cannot be learned without solving lots of problems. Your instructor
will undoubtedly assign you many problems as homework, probably from among
those that do not appear in the Selected Hints and Answers section at the end of the
book. But, at the same time, every hint or answer in that section challenges you to
solve the corresponding problem, whether it has been assigned or not. This is the
only way that you can be sure of your command of the subject. Problems marked
with stars are either a bit harder than the others, or else they deal with side issues.
However, there is no reason to shun these problems. They’re neither that hard nor
that far off the main track.

The system of cross references used in this book is almost self-explanatory.
For example, Theorem 1.48 refers to the one and only theorem in Sec. 1.48, Exam-
ple 2.43b refers to the one and only example in Sec. 2.43b, and so on. Any problem
cited without a further address will be found at the end of the section where it is
mentioned. The book has a particularly complete index to help you find your way
around. Use it freely.

Mathematics books are not novels, and you will often have to read the same
passage over and over again before you grasp its meaning. Don’t let this discourage
you. With a little patience and fortitude, you too will be doing calculus before long.
Good luck!
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Chapter 1

MATHEMATICAL
BACKGROUND

1.1 INTRODUCTORY REMARKS

1.11. You are about to begin the study of calculus, a branch of mathematics
which dates back to the seventeenth century, when it was invented by Newton and
Leibniz independently and more or less simultaneously. At first, you will be exposed
to ideas that you may find strange and abstract, and that may not seem to have very
much to do with the “real world.” After a while, though, more and more applica-
tions of these ideas will put in an appearance, until you finally come to appreciate
just how powerful a tool calculus is for solving a host of practical problems in fields
as diverse as physics, biology and economics, just to mention a few.

Why this delay? Why can’t we just jump in feet first, and start solving practical
problems right away? Why must the initial steps be so methodical and careful?

The reason is not hard to find, and it is a good one. You are in effect learning
a new language, and you must know the meaning of key words and terms before
trying to write your first story in this language, that is, before solving your first
nonroutine problem. Many of the concepts of calculus are unfamiliar, and were
introduced, somewhat reluctantly, only after it gradually dawned on mathematicians
that they were in fact indispensable. This is certainly true of the central concept of
calculus, namely, the notion of a “limit,” which has been fully understood only for
a hundred years or so, after having eluded mathematicians for millennia. Living as
we do in the modern computer age, we can hardly expect to learn calculus in archaic
languages, like that of “infinitesimals,” once so popular. We must also build up a
certain amount of computational facility, especially as involves inequalities, before
we are equipped to tackle the more exciting problems of calculus. And we must
become accustomed to think both algebraically and geometrically at the same time,
with the help of rectangular coordinate systems. All this “tooling up” takes time, but
nowhere near as much as in other fields, like music, with its endless scales and ex-
ercises. After all, in calculus we need only train our minds, not our hands!

It is also necessary to maintain a certain generality in the beginning, especially
in connection with the notion of a “function.” The power of calculus is intimately
related to its great generality. This is why so many different kinds of problems can
be solved by the methods of calculus. For example, calculus deals with “rates of
change” in general, and not just special kinds of rates of change, like “velocity,”
“marginal cost” and “rate of cooling,” to mention only three. From the calculus
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2 Mathematical Background Chap. 1

point of view, there are often deep similarities between things that appear super-
ficially unrelated.

In working through this book, you must always have your pen and scratch
pad at your side, prepared to make a little calculation or draw a rough figure at a
moment’s notice. Never go on to a new idea without understanding the old ideas
on which it is based. For example, don’t try to do problems involving “continuity”
without having mastered the idea of a “limit.” This is really a workshop course, and
your only objective is to learn how to solve calculus problems. Think of an art
class, where there is no premium on anything except making good drawings. That
will put you in the right frame of mind from the start.

1.12. Two key problems. Broadly speaking, calculus is the mathematics of
change. Among the many problems it deals with, two play a particularly prominent
role, in ways that will become clearer to you the more calculus you learn. One
problem is

(1) Given a relationship between two changing quantities, what is the rate of
change of one quantity with respect to the other?

And the other, so-called “converse” problem is

(2) Given the rate of change of one quantity with respect to another, what is
the relationship between the two quantities?

Thus, from the very outset, we must develop a language in which “relationships,”
whatever they are, can be expressed precisely, and in which “rates of change™ can
be defined and calculated. This leads us straight to the basic notions of “function”
and “derivative.” In the same way, the second problem leads us to the equally basic
notions of “integral” and “differential equation.” It is the last concept, of an equa-
tion involving “rates of change,” that unleashes the full power of calculus. You
might think of it as “Newton’s breakthrough,” which enabled him to derive the laws
of planetary motion from a simple differential equation involving the force of gravita-
tion. Why does an apple fall?

We will get to most of these matters with all deliberate speed. But we must
first spend a few sections reviewing that part of elementary mathematics which is an
indispensable background to calculus. Admittedly, this is not the glamorous part of
our subject, but first things first! We must all stand on some common ground. Let
us begin, then, from a starting point where nothing is assumed other than some
elementary algebra and geometry, and a little patience.

1.2 SETS

A little set language goes a long way in simplifying the study of calculus.
However, like many good things, sets should be used sparingly and only when the
occasion really calls for them.

1.21. A collection of objects of any kind is called a set, and the objects them-
selves are called elements of the set. In mathematics the elements are usually numbers
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or symbols. Sets are often denoted by capital letters and their elements by small
letters. If x is an element of a set 4, we may write x € A, where the symbol € is read
“is an element of.” Other ways of reading x € A are “x is a member of A,” “x belongs
to A,” and “A contains x.” For example, the set of all Portuguese-speaking countries
in Latin America contains a single element, namely Brazil.

1.22. [fevery element of a set A is also an element of a set B, we write A < B,
which reads “A is a subset of B.” If A is a subset of B, but B is not a subset of 4, we
say that A is a proper subset of B. In simple language, this means that B not only
contains all the elements of A4, but also one or more extra elements. For example,
the set of all U.S. Senators is a proper subset of the set of all members of the U.S.
Congress.

1.23. a. One way of describing a set is to write its elements between curly
brackets. Thus the set {a,b, ¢} is made up of the elements a, b and ¢. Changing the
order of the elements does not change the set. For example, the set {b,¢,a} is the
same as {a,b,c}. Repeating an element does not change a set. For example, the set
{a,a,b,c,c} is the same as {a, b, c}.

b. We can also describe a set by giving properties that uniquely determine its
elements, often using the colon: as an abbreviation for the words “such that.” For
example, the set {x: x = x?! is the set of all numbers x which equal their own
squares. You can easily convince yourself that this set contains only two elements,
namely 0 and 1.

1.24. Union of two sets. The set of all elements belonging to at least one of
two given sets A and B is called the union of A and B. In other words, the union
of A and B is made up of all the elements which are in the set 4 or in the set B, or
possibly in both. We write the union of 4 and B as 4 u B, which is often read
“A cup B.” because of the shape of the symbol U. For example, if A4 is the set {a, b, ¢}
and Bis the set {c,d, e}, then 4 U Bis theset {a,b,c,d, e}.

1.25. Intersection of two sets. The set of all elements belonging to both of two
given sets 4 and B is called the intersection of A and B. In other words, the inter-
section of 4 and B is made up of only those elements of the sets 4 and B which are
in both sets; elements which belong to only one of the sets 4 and B do not belong
to the intersection of 4 and B. We write the intersection of 4 and B as A n B, which
is often read “A cap B,” because of the shape of the symbol n. For example, if A4 is
the set {a,b,c,d | and Bis the set {b,d, e, f,g}, then A N Bis the set {b,d}.

1.26. Empty sets. A set which has no elements at all is said to be an empty set
and is denoted by the symbol . For example, the set of unicorns in the Bronx Zoo
is empty.

By definition, an empty set is considered to be a subset of every set. This is just
a mathematical convenience.

1.27. Equality of sets. We say that two sets 4 and B are equal and we write
A = B if'A and B have the same elements. If 4 is empty, we write A = ¢f. For
example, {x: x = x?} = {0, 1}, as already noted, while {x: x # x| = ¥ since no
number x fails to equal itself!
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PROBLEMS

Find all the proper subsets of the set {a,b,c}.
Write each of the following sets in another way, by listing elements:
(@ {(xix=—x}; (b)) {x:ix+3=8}; (¢ {x:x*=09};
(d) {x:x*—=5x+6=0}; (e) {x:xis a letter in the word “calculus”™}.
Let A = {1,2,{3},{4,5}}. Which of the following are true?
(a) 1eA; (b) 3eA4; () {2}eA.
How many elements does A have?
Which of the following are true?
(a) IfA =B,thenA < BandB < A; (b) IfA <= BandB < A,then A = B;
(c) {x:xeAd} = A; (d) {all men over 80 years old} = (.
Find the union of the sets 4 and B if
(@ A= {ab,c},B = {ab,cd}, (b) A=1{1,23,4},B={-1,0,23}.
Find the intersection of the sets A and B if
(a) A= 1{1,2,3,4},B = {3,4,5,6}; (b) A ={ab,c,d},B=1{f,gh}.
Given any set A, verifythat Au A = An A = A.
Given any two sets A and B, verify that both 4 and B are subsets of 4 U B,
while 4 n B is a subset of both 4 and B.
Given any two sets 4 and B, verify that 4 n B is always a subset of 4 U B.
Can A N B ever equal A U B?
Given any two sets A and B, by the difference A — B we mean the set of all
elements which belong to A4 but not to B. Let A = {1,2,3}. Find A — B if
(@ B={1,2}; (b) B={45: () B=g: (d B={1,23}.
Which of the following sets are empty?
(@) {x:xisa letter before ¢ in the alphabet};
(b) {x:xisa letter after z in the alphabet} ;
() xix+7=17};
(d) {x:x*=9and2x = 4}.
Which of the following sets are empty ?
(a) The set of all right triangles whose side lengths are whole numbers;
(b) The set of all right triangles with side lengths in the ratio 5:12:13;
(c) The set of all regular polygons with an interior angle of 45 degrees;
(d) The set of all regular polygons with an interior angle of 90 degrees;
(e) The set of all regular polygons with an interior angle of 100 degrees.
Explain your reasoning.

Comment. A polygon is said to be regular if all its sides have the same
length and all its interior angles are equal.
Let A = {a,b,c,d}, and let B be the set of all subsets of 4. How many elements
does B have?

1.3 NUMBERS

In this section we discuss numbers of various kinds, beginning with integers and

rational numbers and moving on to irrational numbers and real numbers. The set
of all real numbers is called the real number system. 1t is the number system needed
to carry out the calculations called for in calculus.

1.31. The number line. Suppose we construct a straight line L through a point
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Figure 1.

O and extend it indefinitely in both directions. Selecting an arbitrary unit of mea-
surement, we mark off on the line to the right of O first 1 unit, then 2 units, 3 units,
and so on. Next we do the same thing to the left of O. The marks to the right of
O correspond to the positive integers 1, 2, 3, and so on, and the marks to the left
of O correspond to the negative integers —1, —2, —3, and so on. The line L,
“calibrated™ by these marks, is called the number line, and the point O is called the
origin (of L). The direction from negative to positive numbers along L is called the
positive direction, and is indicated by the arrowhead in Figure 1.

1.32. Integers

a. The set of positive integers is said to be closed under the operations of
addition and multiplication. In simple language, this means that if we add or multi-
ply two positive integers, we always get another positive integer. For example,
2 + 3 =>5and 23 = 6, where 5 and 6 are positive integers. On the other hand, the
set of positive integers is not closed under subtraction. For example, 2 — 3 = —1,
where — 1 is a negative integer, rather than a positive integer.

The number 0 corresponding to the point O in Figure 1 is called zero. It can be
regarded as an integer which is neither positive nor negative. Following mathematical
tradition, we use the letter Z to denote the set of all integers, positive, negative and zero.
The set Z, unlike the set of positive integers, is closed under subtraction. For example,
4 —-2=23—-3=0and 2 — S = -3, where the numbers 2, 0 and —3 are all
integers, whether positive, negative or zero.

b. An integer n is said to be an even number if n = 2k, where k is another
integer, that is, if n is divisible by 2. On the other hand, an integer n is said to be
an odd number if n = 2k + 1, where k is another integer, that is, if 1 is not divisible
by 2, or equivalently leaves the remainder 1 when divided by 2. 1t is clear that every
integer is either an even number or an odd number.

1.33. Rational numbers. The set Z is still too small from the standpoint of
someone who wants to be able to divide any number in Z by any other number
in Z and still be sure of getting a number in Z. In other words, the set Z is not closed
under division. For example, 2 ~ 3 = 3and —4 ~ 3 = —%, where 2 and —% are
fractions, not integers. Of course, the quotient of two integers is sometimes an integer,
and this fact is a major preoccupation of the branch of mathematics known as number
theory. For example, 8 + 4 = 2 and 10 -+ —5 = —2. However, to make division
possible in general, we need a bigger set of numbers than Z. Thus we introduce
rational numbers, namely fractions of the form m/n, where m and n are both integers
and n is not zero. Note that every integer m, including zero, is a rational number,
since m/1 = m.

Let Q (for “quotient”) denote the set of all rational numbers. Then the set Q
is closed under the four basic arithmetical operations of addition, subtraction, multi-
plication and division, provided that we never divide by zero. It cannot be emphasized
too strongly that division by zero is a forbidden operation in this course. These
matters are considered further in Problems 3 and 13.
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1.34. Irrational numbers

a. With respect to the number line, the rational numbers fill up the points
corresponding to the integers and many but not all of the points in between. In
other words, there are points of the number line which do not correspond to rational
numbers. To see this, suppose we construct a right triangle PP'O with sides PP’ and
PO of length 1, as in Figure 2A. Then, by elementary geometry, the side OP is of
length /12 + 12 = /2 (use the familiar Pythagorean theorem). Suppose we place
the side OP on the number line, as in Figure 2B, with the point O coinciding with the
origin of the line. Then the point P corresponds to the number /2. But, as mathe-
maticians concluded long ago, the number ﬁ cannot be rational, and therefore P
is a point of the number line which does not correspond to a rational number.

b. By an irrational number we simply mean a number, like ﬁ which is not
rational. To demonstrate that ﬁ is irrational, we argue as follows. First we digress
for a moment to show that the result of squaring an odd number (Sec. 1.32b) is
always an odd number. In fact, every odd number is of the form 2k + 1, where k
is an integer, and, conversely, every number of this form is odd. But, squaring the
expression 2k + 1, we get

2k + 1)? = 4k* + 4k + 1 = 2(2k* + 2k) + 1,

which is odd, since 2k? + 2k is itself an integer (why?).

Now, returning to the main argument, suppose ﬁis a rational number. Then
/2 must be of the form m/n, where m and n are positive integers and we can assume
that the fraction m/n has been reduced to lowest terms, so that m and n are no longer
divisible by a common factor other than 1. (For example, the fraction 13 is not in
lowest terms, but the equivalent fraction % is.) We can then write

m
)2 = = (1)
n
Squaring both sides of (1), we have
2
m
2 =—
n?’
or equivalently
m? = 2n?. (2)

Thus m? is an even number, being divisible by 2, and therefore the number m itself
must be even, since if m were odd, m? would also be odd, as shown in the preceding
paragraph. Since m is even, we can write m in the form

m = 2k, (3)



