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Preface

Researches on the multiagent and its applications have been paid attention in recent
years. Reinforcement learning (RL) theory and coordination method in the multiagent
system are important research subjects those have been attracting surprisingly attention
from researches in computer science and its application, artificial intelligence, automatic
control, and economy management, etc.

On the basis of our experience for years of research and the latest results on the rel-
evant projects, such as the National Natural Science Foundation of China, Beijing Mu-
nicipal Natural Science Foundation and so on, we present this academic book focusing
on the aspects of reinforcement learning and coordination in the multiagent system.
From an introduction to multiagent system, reinforcement learning, agents coordina-
tion, and other perspectives, a holistic view of the reinforcement learning and coordina-
tion in the multiagent system is delineated. Further, theories and methods concerned
with reinforcement learning and coordination strategy in the multiagent system will be
discussed deeply in the forthcoming chapters, and followed by a view of application to
different realistic areas, respectively.

Based on the update policy of reinforcement values and the cooperative way of the
indirect media communication, this book first presents a multiagent learning system,
the Q-ACS learning method. Then, by investigating the active exploration mechanism
and the unified action policy with exploration and exploitation in RL, utilizing indirect
media communication, this book presents the T-ACS multiagent learning method. Fur-
ther, this book studies the heterogeneous multiagent learning system, the D-ACS learn-
ing method that composites the learning policy of the Q-ACS learning and the T-ACS
learning and takes different updating policies of reinforcement values. The agents in our
methods are given a simply cooperating way exchanging information in the form of rein-
forcement values updated in the common model of all agents. Owning the advantages of
exploring the unknown environment actively and exploiting learned knowledge effective-
ly, the proposed methods are able to solve both problems with MDPs and combinatorial
optimization problems effectively. Moreover, by investigating the action conversion
mechanism, for the task under MDP, this book presents a multiagent RL algorithm,

the Q-ac multiagent RL method that utilize both the direct communication and the indi-

« I -



rect media communication for learning agents to realize the cooperation. Besides per ac-
tion one-step Q-learning, experience-replay and prioritized sweeping Q-value update are
used to update reinforcement values in the Q-ac multiagent RL method. In addition, by
investigating the swarm-based routing method and the multiagent RL applications, this
book analyses the possibility and merit of adopting RL method in multicast routing pro-
tocol for mobile ad hoc networks, and presents a novel multicast routing method, the
Q-MAP algorithm. The convergence and rationality of the Q-MAP method are analyzed
from the point of view of RL. Based on successful application to dynamical domains,
this book presents a multiagent coordination mechanism using reinforcement learning to
the supply chain management, which derives better profit comparing with the typical
policy in the stochastic supply chain.

We would like to express our gratitude to all the contributors for this book, and

thank Tsinghua University press for helping in many ways.

Sun Ruoying
Zhao Gang
November 2013
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Introduction

Chapter 1 Introduction

With the successful applications in real world, machine learning has become more
and more acceptable. Neural networks have been trained in recognition of handwriting
and are superior to any other handwriting recognition system'' */. Decision trees leads
to excellent classification of data even in the case that the underlying pattern is obvious-
ly meaningless and cost-sensitive decision task®~7!. A more general method, which can
learn structures such as neural networks or decision tree, is reinforcement learn-

[8—11]

ing In recent years, the multiagent reinforcement learning systems have received

increasing attention in the artificial intelligence community'? '*,

Research in such sys-
tems involves the investigation of autonomous, rational and flexible behavior of entities
and their interaction and coordination in such diverse areas as robotics, information re-
trieval, communication network traffic control, and supply chain management. In the

first part of this book, we introduce reinforcement learning, multiagent system, and

agents’ interaction and coordination from a general viewpoint.

1.1 Reinforcement Learning

1.1.1 Generality of Reinforcement Learning

We begin with a general overview of the state-of-the-art in research in reinforce-
ment learning and discuss the integration of learning methods in agent systems.

Reinforcement Learning (RL), which is currently an actively researched topic in
Artificial Intelligence (Al), is a computational approach that an agent tries to maximize
the total amount of reward it receives when interacting with a complex, dynamic envi-
ronment by trial-and-error. RL"7 ?! has been used to solve many complex tasks nor-

[24]

mally thought of as quite cognitive, for example, backgammon game robotic soc-




R (0 TRV R
g EmEusmER) I WH5

>

[25]C26]
’

.
cer’ 27]

elevator problem'?”’, dynamic vehicle routing on goods distribution"**/(?*1,
supply chain ordering management™"'*") and so on™* ¥,

RL requires learning from interactions in an environment in order to achieve certain
goals. The entity interacting with its environment by actions is called agent. At each
time step, an agent observes its environment and selects an action based on that obser-
vation, In the next time step, the agent obtains the new observation that may reflect the
effects of its previous action and a reward indicating the quality of the selected action.

Dynamic Programming (DP)se

solves state sequences optimization problems by
solving recurrent relations instead of explicitly searching in the space of state sequences.
In its most general form, DP applied to optimization problems in which the costs of ob-
jects in the search space have a compositional structure can be exploited to find an object
of globally minimum cost without performing exhaustive search. Bellman""l has intro-
duced the discrete stochastic version of the optimal control problem known as Markov
Decision Processes (MDPs), and Howard™* has devised the policy iteration method for
MDPs. All of these are essential elements underlying the theory and algorithms of mod-
ern RL. Although DP algorithms avoid exhaustive search in the state sequence space,
they are still exhaustive by Al standards since they require repeated generation and ex-
pansion of all possible states. The current RL algorithm is to find optimal policies from
experience without a priori model of an environment, or even no requiring the model of
the environment. This is one of main innovation in RL algorithms for solving problems
traditionally solved by DP. The learning agent interacts with its environment directly to
obtain information which, by means of an appropriate algorithm, can be processed to
produce an optimal policy. Thus, the two most important distinguishing characteristics
of RL are: trial-and-error and delayed reward. A major influence on research leading to
current RL algorithms is the method used by Samuel"**’ to modify a heuristic evaluation
for the game of checkers. Due to its compatibility with connective learning algorithms,
DP approach has been refined and extended by Sutton'*! and uses heuristically in a num-
ber of single agent problem solving task. These algorithms are called Temporal Differ-
ence (TD) methods and have obtained some theoretical results about their convergence,
Besides, researchers within RL field have also developed a number of different methods
under RL, for example, Classifier Systems''/"**), and Q-learning. In the early 1980s,
Barto have described a technique for addressing the temporal credit assignment prob-
lem, and then this method has culminated in Sutton’s TD. In the late 1980s, using the

term Incremental Dynamic Programming, Watkins has extended TD algorithms, devel-
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oped Q-learning by explicitly utilizing the theory of DP for solving MDPs, and noted the
approximate relationship between DP, TD, and Q-learning algorithms. The relevance
of DP for planning and learning in Al has been articulated in Dyna-Q architecturet*.

In Q-learning, an agent’s decision procedure is specified by a policy = that maps
states into actions. The environmental feedback is defined by a reward function R that
maps states into numerical rewards. The goal of Q-learning is to compute an optimal
policy nfi that maximizes the reward an agent receives. This reward can be measured in
several ways: discounted cumulative reward, finite horizon reward, and average re-
ward. The discussions in this book are based on discounted cumulative reward Q-learn-
ing. Q-learning algorithm has been proven to converge towards the correct values under
the condition that the reward values have an upper bound.

Though there are memory space problems to storing all Q-values in a table, the
look-up table is often used since its simplicity. And a function approximation of Q-val-
ue, e. g., Neural Network'*', can be used to solve the memory space problems, how-

ever, this approach may lead to a more complex update mechanism.
1.1.2 Reinforcement Learning on Markov Decision Processes

The learning agent needs the ability to observe its state in order to select an action
using a policy. The states on the environment must contain all necessary information for
the learning agent to make sense, which property is called the Markov property. A task
domain with this property is called Markov Decision Process (MDP). The basic task for
RL is MDP.

Assume that there are a finite number of states, s;s 535+ 5,5 a finite number of
actions, a,, ass - a,, and rewards, r,, ry, .., r,, in the task environment. The
Markov property for the RL problem is formally defined at the following. Consider how
an environment responds at time £ + 1 to the action taken at time ¢t. Generally, this re-
sponse may depend on everything that has happened earlier. In this case, the dynamics
can be defined by specifying the complete probability distribution:

Pri{sa: = 8 s71 = 7 | Si0@usT0sSins@u s 37155 5Q0 ) » (1. D
for all s, », and all possible values of the past events: s,y @,» 7is s 71+ Sos ao. If the
environment’s response at t+1 depends only on the state and action at ¢, in which case
the dynamics of an environment can be defined by specifying

Pris;m = s srur =7 | sivacts (1.2
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for all s, r, s.» and a,, then, it is called the state signal has the Markov property, in other
words, if and only if (1. 1) is equal to (1.2) for all 5', r, and histories, s,, @,y 7o sy 715 So»
a,. In this case, the task environment is also said to have the Markov property.

A Markov Decision Process (MDP) is defined in terms of stochastic dynamic envi-
ronment with finite states and discrete time steps. The basic frame of an MDP is a tuple
M =<S, A, P, R, B>, where

« Sis a finite set of states of the environment, (s;, 535, 5,);

« A is a finite set of actions, (a;, az» - » a,);

« P :S X A—I[(S) is the state transition function, giving for each state and
agent action, a probability distribution over states, i.e., P (s, a, s') is the
probability of ending in state s’ given that the agent starts in state s and takes
action a;

« R .S X A — R is the reward function, giving the expected immediate reward
gained by the agent for taking each action in each state, that is, (s, a) is the
expected reward for taking an action a in a state s;

+ 0 <B<{1is a discount factor.

Let V*(s) be the expected discounted future reward for starting in a state s and exe-

cuting stationary policy x indefinitely, and then it is recursively defined by

" = R(s,n()) + B P (sym(s) 5OV, (1.3)

Ses
And, given any value function V, the greedy policy with respect to that value func-

tion, vy, is defined as

ny (s) = argmax,[R(s,a) +BD P (s,a,5)HV () ]. (1.4

Ses
This policy is obtained by taking the action in each state with the best one-step val-

ue according to V.

In an MDP, given an initial state s, an agent is expected to execute the policy =
that maximizes V*(s). Howard has showed that there exists a stationary policy =" that
is optimal for every starting state, The value function for this policy, written V", is de-

fined by the set of equations
V' (s) = max|R(s,a@) + 8D P (s.a,5)V" () ], (1.5)
L] leS
and any greedy policy with respect to this value function is optimal. If a complete de-
scription of states, actions, rewards and transitions on an MDP is given, the optimal
policy can be found by DP methods, for example, there are Value Iteration and Policy

Iteration methods!™.
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The learning agents in RL system have no knowledge about the environment in ad-
vance. The Q-learning, which is a representative RL algorithm, works by estimating
the values of rules. Q-learning can be viewed as a sampled asynchronous method for es-
timating the optimal state action values, or Q function, for unknown MDPs. The value
Q(s, a) is defined to be the expected discounted sum of future rewards obtained by tak-
ing an action a from a state s and following a policy thereafter. Let Q" (s, a) be the
maximum expected discounted reinforcement signal of taking an action a in a state s and
continuing by choosing actions optimally. And note that V" (s) is the value of s assum-
ing the best action is taken, then, V' (s) = max, Q" (s, a). Hence, Q" (s, a) can be

written recursively as

Q’ (s,a) = R(s,a) + B> P (s,a,s’) maxQ" (s",a’). (1.6)

S€S a

And since V* (s) = max, Q" (s, a), it has
7" (s) = argmax,Q" (s,a), (1.7
as an optimal policy.
The experience available to an RL agent on MDPs can be defined by tuples << s, a,
r, s >. An experience tuple is a snapshot of a single transition: the agent starts in a
state s, takes an action a, receives an immediate reward r and ends up in a state 5.
Then, the Q-learning rule is
Q" (sya) = (1 —a)Q" (s,a) +a[r+ﬁm§xQ(sl ,a'). (1.8)
This creates a new estimate of Q" (s, @). If each action in each state is executed an
infinite number of times on an infinite run and a, the learning factor, is decayed appro-
priately, the Q-value estimate will converge with probability 1 to Q*!*', Once these
values have been learned, the optimal action from any state is the one with the largest

Q-value.

1.1.3 Integrating Reinforcement Learning into Agent Architecture

The word “agent” means different thing to different group of researchers. Most of
the past Machine Learning (ML) research has been focused on “disembodied” learning
algorithms, i.e. , without taking into account that the learning algorithm may be em-
bedded in an agent that is situated in an environment. Recently, the context of agent is
referred to the system that is embedded in an environment, interacts with the environ-
ment, and makes decisions to change the state of the environment. An agent consists of

many different interacting modules, vision, planning, etc. , and the learning module is




& oz el (1)
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just one of them. The external system that an agent is “embedded” in, can perceive and

act on is called environment. The agent interacts with the environment by selecting ac-

tions, and the environment presents the agent new situation responding to those ac-

tions. It is a model of an agent interacting synchronously with the agent’s environment,

Envirj‘in—em/=

state: s

‘ reward: r action: a
A

N
perceptual

cognitive
y —<
updating ~
e e

N—

Figure 1.1 [Irame of reinforcement learning.

As shown in Fig. 1. 1, the agent takes the state of the environment as input and

generates actions as output, which affects the state of the environment. Given this mod-

el, we can define the learning target of an agent simply as a decision procedure for choo-

sing actions. And there are three types of data sources'’”! that can be distinguished:

External teacher; an external teacher provides examples of actions with the
corresponding classification indicating their optimality or appropriateness.
This model is equivalent to fully supervised learning;

Environmental feedback: while the agent acts, it receives a feedback from the
environment indicating the benefit of the actions. The feedback is usually de-
fined in terms of the utility of the current state that the agent finds itself in.
This training model corresponds to RL. It should be noted that not necessarily
all states will result in feedback. This means that once some environmental
feedback is received it has to be propagated to all actions that potentially con-
tributed to it. Certainly, actions that contributed strongly should receive more
recognition. A common technique to distribute rewards amongst actions is to
reward more recent actions higher using a discounted factor;

Internal agent bias: while the agent is exploring the environment with its ac-
tions, it looks out for useful patterns and interesting properties of the environ-

ment that enable the agent to generate concepts describing the environment.
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Usefulness and interestingness are purely based on the agent’s internal bias,
and no explicit feedback is given to the agent. It is assumed that the discovered
concepts will help the agent to perform future specific goals efficiently and ef-
fectively. This learning model is usually denoted by the term unsupervised
learning.

As it enters a state in the environment, the agent must identify the status of the

state in accordance with the environment, which is usually described as observe.
The Boltzmann distribution and e-greedy transition policy are usually used as the

action selecting policy for solving MDPs. The Boltzmann distribution is expressed as

e7 Q(s,a)

§ eyQ(x.b)
b

where ¥ tends to infinity as an annealing process so that even a small difference between

P(a | s) = (1.9)

Q-value will eventually lead to the best action being selected with probability 1. 0. And
the greedy transition policy implements the action selecting with argmax,Q (s, 6). And,
the e-greedy transition policy means an agent behaves greedily at most learning time,
but with small probability e, instead, selects a rule at random, independent of the rein-
forcement values.

An episode is defined as a history of experiences from the beginning of learning to a
derivation of a reward or from a derivation of a reward to the following derivation of a
reward. During learning episodes, an agent will derive rewards from the embedded en-

vironment and update reinforcement values on the states belonging to the episodes.

1.2 Multiagent Reinforcement Learning

1.2.1 Multiagent Systems

MultiAgent Systems (MAS) form a particular type of Distributed Artificial Intelli-
gence (DAID) systems. Environments with multiagent are a large area of interest since
communication over the Internet has become such a big part of commerce and daily life.
In human society, learning is an essential component of intelligent behavior. However,

each individual agent need not learn everything from scratch by its own discovery. In-




A

« gxwEpesmec) 05 BP0

deed, they exchange information and knowledge with each other and learn from their
peers or teachers. Although there are situations where an agent can operate usefully by
itself, increasing interconnection and networking of computers is making such situations
rare. When a task is too big for a single agent to handle, they may cooperate in order to
accomplish the task. For example, ants are known to communicate about the locations
of food, and to move objects collectively. At times, the number of agents may be too
numerous to deal with them individually, and it is then more convenient to deal with
them collectively, as a society of agents. In fact, many real-world problems such as en-
gineering design, intelligent search, robotics, etc. , require multiple agents. It can be
imagined that many networking resources such as routers, gateways, or any other kind
of server use MAS to improve their efficiency not only internally, but also in the com-

munication with other resources.
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Figure 1.2  Multiagent Learning is at the intersection of MAS and ML.

Multiagent learning is the intersection of MAS and ML, two subfields of Al (see
Fig. 1.2). Multiagent learning is done by several agents and becomes possible only be-
cause several agents are present. In fact, in certain circumstances, the first clause of
this definition is not necessary. It is possible to engage in multiagent learning even if
only one agent is actually learning. In particular, if an agent is learning to acquire skills
to interact with other agents in its environment, then regardless of whether or not the
other agents are learning simultaneously, the agent’s learning is multiagent learning.
Especially if the learned behavior enables additional multiagent behaviors, perhaps in
which more than one agent does learn, the behavior is a multiagent behavior. Notice
that this situation certainly satisfies the second clause of the definition: the learning
would not be possible if the agents were isolated.

Traditional ML typically involves a single agent that is trying to maximize some
utility function without any knowledge, or care, of whether or not there are other a-
gents in the environment. Examples of traditional ML tasks include function approxi-

mation, classification, and problem-solving performance improvement given empirical




