Learning and Memory

From Brain to Behavior

Mark A. Gluck • Eduardo Mer

ck • Fdiiardo Mercado • Catherine F. Mvers

Learning and Memory

From Brain to Behavior

Mark A. Gluck

Rutgers University - Newark

Eduardo Mercado

University at Buffalo, The State University of New York

Catherine E. Myers

Rutgers University - Newark

Worth Publishers • New York

Publisher: Catherine Woods Acquisitions Editor: Charles Linsmeier Executive Marketing Manager: Katherine Nurre Development Editors: Mimi Melek, Moira Lerner, and Elsa Peterson Assistant Editor: Justin Kruger Project Editor: Kerry O'Shaughnessy Media & Supplements Editor: Christine Ondreicka Photo Editor: Bianca Moscatelli Photo Researcher: Julie Tesser Art Director, Cover Designer: Babs Reingold Interior Designer: Lissi Sigillo Layout Designer: Lee Mahler Associate Managing Editor: Tracey Kuehn Illustration Coordinator: Susan Timmins Illustrations: Matthew Holt, Christy Krames Production Manager: Sarah Segal Composition: TSI Graphics Printing and Binding: RR Donnelley

Library of Congress Control Number: 2007930951 ISBN-13: 978-0-7167-8654-2 ISBN-10: 0-7167-8654-0

© 2008 by Worth Publishers All rights reserved.

Printed in the United States of America

First printing 2007

Worth Publishers 41 Madison Avenue New York, NY 10010 www.worthpublishers.com

PREFACE

he field of learning and memory has undergone enormous changes over the last decade, primarily as a result of new developments in neuroscience. As we have gained a greater understanding of the neurobiological bases of behavior, the boundary between the biological approach and the psychological approach to the study of learning and memory has begun to disappear.

A related consequence of this fusion of brain research and psychology is that it no longer makes sense to study animal learning and human memory as separate disciplines. After several decades during which animal and human learning were described by independent paradigms, the discovery of basic biological mechanisms common to all species has launched a unified approach to animal and human behavioral studies.

Recent advances in neuroscience as applied to learning and memory have also produced dramatic changes in clinical practices over the last decade. Neurologists, psychiatrists, clinical psychologists, and rehabilitation specialists are now able to use neuroscience in the diagnosis and treatment of the clinical disorders of learning and memory. Alzheimer's disease, autism, schizophrenia, Parkinson's disease, Huntington's disease, dyslexia, ADHD, and stroke are just a few of the disorders for which new treatment options have been developed as a result of basic behavioral and cognitive neuroscience studies of learning and memory.

With these developments in mind, we set ourselves the task of writing a comprehensive, accessible, and engaging introduction to learning and memory that provides an introduction to a field in transition. *Learning and Memory: From Brain to Behavior* presents a new curriculum that integrates coverage of human memory and animal learning and includes three key components of the field: behavioral processes, brain systems, and clinical perspectives.

Neuroscience Focus

Neuroscience has altered the landscape for behavioral research, shifting priorities and changing our ideas about the brain mechanisms of behavior. To that end, *Learning and Memory: From Brain to Behavior* integrates neuroscience research into each chapter, emphasizing how new findings from neuroscience have allowed psychologists to consider the functional and physiological mechanisms that underlie the behavioral processes of learning and memory. Chapter 2: The Neuroscience of Learning and Memory offers an accessible introduction to neuroscience for students unfamiliar with the basics.

Clinical Focus

Learning and Memory: From Brain to Behavior examines new research in learning and memory and traces how these findings have spurred the development of new diagnoses and treatments for a variety of neurological and psychiatric disorders. Each core content chapter (chapters 3–13) includes a section that shows how behavioral processes and brain substrates apply to clinical psychology. These "Clinical Perspectives" sections are one way in which the book emphasizes the influence of learning and memory research in the real world.

Research Focus

Throughout the pages of *Learning and Memory: From Brain to Behavior*, we introduce new breakthroughs, which will spark student interest and imagination, and discuss how material from each chapter applies to daily life. Two types of boxes support this focus on cutting edge research and real life applications:

- *Unsolved Mysteries* boxes explore compelling research conundrums to capture student interest and imagination. These include topics such as:
 - Why can't experts verbalize what they do?
 - Is working memory the key to intelligence?
 - Why did the cerebral cortex evolve?
 - Diagnosing and preventing Alzheimer's disease
- Learning and Memory in Everyday Life boxes in each chapter illustrate the practical implications of research, especially those that are relevant and interesting to undergraduate students. These include topics such as:
 - Top ten tips for a better memory
 - Are video games good for the brain?
 - Can we reduce memory overload?
 - Discrimination and stereotypes in generalizing about other people

Student Focus

- No Prerequisites We understand that students may come to this course from different backgrounds, even different disciplines, so we do not assume any level of familiarity with basic psychology or neuroscience concepts. The first two chapters of the text offer a complete overview of the field of the psychology of learning and memory and the neuroscience foundations of behavior. Later chapters explain all new concepts clearly with emphasis on real-life examples and teaching-oriented illustrations.
- Memory First In contrast to many older books, we cover memory topics before learning. The philosophy here is to start off with the big picture, giving students a broad overview of memory systems and brain regions, before getting into the fine details of neuronal processes and cellular interactions. We believe this ordering makes the material more accessible to students, and also prepares them to understand why the lower-level information matters. However, the chapters stand on their own to allow alternate organizations, if desired.
- Engaging Narrative We present learning and memory concepts using a lively, clear, and example-rich narrative. We have tried to present our vision of an exciting field in transition as a colorful dialogue—a conversation between authors and readers.
- Full-Color Art Program The first full-color book for the course, Learning and Memory: From Brain to Behavior uses original anatomical art, state-of-the-art brain scans, and color-coded figures to help students visualize the processes involved in learning and memory. Photos offer a link to the real world, as well as a look back in time; cartoons offer occasional comical commentary (and often additional insights) alongside the main narrative.
- Real-World Implications In addition to the section on clinical perspectives, we
 have included many concrete everyday life examples of learning and memory
 that help students grasp the implications of what they're studying and the relevance of learning and memory in their own lives.

Purposeful Pedagogy

 Test Your Knowledge features give students the opportunity to check their comprehension and retention of more challenging topics. Suggested answers are provided at the end of the chapter.

- Interim Summaries follow the behavioral processes and brain substrates sections, to help students review major concepts presented in the previous section.
- **Concept Checks** at the end of each chapter ask critical thinking questions that require an understanding and synthesis of the key material in the chapter. These features ask students to apply the knowledge they've gained to a real-life situation. Suggested answers are provided at the end of the book.
- Key Points, presented as bulleted summaries at the end of each chapter, review core material.
- **Key Terms** with page references appear at the end of each chapter; these allow students to review new terminology presented in the chapter. All key terms with their definitions are included in an end-of-text glossary.
- **Further Reading** sections at the end of each chapter offer accessible resources for students who wish to delve more deeply into the material.

Media/Supplements

Book Companion Site at www.worthpublishers.com/gluck

The companion site serves students as a virtual study guide, 24 hours a day, 7 days a week. The password-protected instructor's section offers a variety of assessment, presentation, and course management resources.

Book Specific Lecture & Art PowerPoint Slides

Mary Waterstreet, St. Ambrose University

To ease your transition to *Learning and Memory*, a prepared set of lecture and art slides, in easy-to-adopt PowerPoint format, are available to download from the instructor's side of the Book Companion Site.

Instructor's Resource Manual and Test Bank

(Mark Krause, *University of Southern Oregon*, and Wendy Braje, *SUNY-Plattsburgh*)

The Instructor's Resource Manual includes extensive chapter-by-chapter suggestions for in-class presentations, projects and assignments, as well as tips for integrating multimedia into your course. It also provides more comprehensive material on animal learning for instructors who allocate more of their courses to the classic studies of animal learning. The Test Bank features approximately 75 multiple-choice questions per chapter as well as an assortment of short-answer and essay questions. Also included in the Test Bank are the chapter-specific Web quizzes (10-15 questions each) that appear on the Book Companion Site.

Diploma Computerized Test Bank (Available in Windows and Macintosh on one CD-ROM)

The CD-ROM allows instructors to add an unlimited number of questions, edit questions, format a test, scramble questions, and include pictures, equations, or multimedia links. With the accompanying gradebook, instructors can record students' grades throughout a course, sort student records and view detailed analyses of test items, curve tests, generate reports, add weights to grades, and more. This CD-ROM is the access point for Diploma Online Testing. Blackboard and WebCT formatted versions of the Test Bank are also available within the Course Cartridge and ePack.

Acknowledgments

This book has benefited from the wisdom of expert reviewers and instructors from laboratories and classrooms around the country. From the earliest stages of the development process, we solicited feedback and advice from the leading voices in the field of learning and memory to ensure that the book expresses the most current and accurate understanding of the topics in each chapter. Over the course of this book's development, we have relied on these experts' criticism, corrections, encouragement, and thoughtful contributions. We thank them for lending us their insight, giving us their time, and above all for sharing in our commitment to creating a new textbook and a new curriculum that reflects a contemporary perspective on the field.

Michael Todd Allen University of Northern Colorado

John Anderson
Carnegie Mellon University

Hal Arkes
Ohio State University

Amy Arnsten Yale University

Ed Awh
University of Oregon

Deanna Barch Washington University, St. Louis

Carol Barnes
University of Arizona

Mark Basham Metropolitan State College of Denver

Mark Baxter Oxford University

April Benasich Rutgers University—Newark

Gordon Bower Stanford University

György Buzsáki Rutgers University-Newark

John Byrnes University of Massachusetts

Larry Cahill
University of California, Irvine

Thomas Carew University of California, Irvine

KinHo Chan Hartwick College Henry Chase Cambridge University

Roshan Cools Cambridge University

James Corter Columbia University

Stephen Crowley Indiana University

Clayton Curtis
New York University

Irene Daum
Ruhr University Bochum Germany

Nathaniel Daw New York University

Mauricio Delgado Rutgers University—Newark

Dennis Delprato

Eastern Michigan University

Mark D'Esposito University of California, Berkeley

Michael Domjan University of Texas, Austin

William Estes Indiana University

Robert Ferguson
Buena Vista University

John Forgas
University of South Wales

Joaquin Fuster University of California, Los Angeles

Sherry Ginn Wingate University Robert Goldstone Indiana University

Robert Greene
Case Western Reserve University

Martin Guthrie Rutgers University-Newark

Stephen Hanson Rutgers University-Newark

Kent Harber Rutgers University

Michael Hasselmo Boston University

Robert Hawkins Columbia University

Kurt Hoffman Virginia Tech University

Steven Horowitz

Central Connecticut State University

James Hunsicker Southwestern Oklahoma State University

Stephen Joy Albertus Magnus College

Lee Jussim
Rutgers University-New Brunswick

Daniel Kahneman Princeton University

E. James Kehoe University of South Wales

Szabolcs Kéri Semmelweis University, Hungary

Alan Kluger New York University Medical School Stephen Kosslyn Harvard University

John Kruschke Indiana University

Joseph LeDoux New York University

Elizabeth Loftus University of California, Irvine

Robert Lubow Tel-Aviv University

Elliot Ludvig
University of Alberta

Gail Mauner University at Buffalo, SUNY

James McClelland Stanford University

James McGaugh University of California, Irvine

Barbara Mellers University of California, Berkeley

Earl Miller *MIT*

George Miller Princeton University

Mortimer Mishkin National Institutes of Mental Health

John Moore University of Massachusetts

Lynn Nadel University of Arizona

Ken Norman Princeton University

Robert Nosofsky Indiana University

Laura O'Sullivan Florida Gulf Coast University

Ken Paller Northwestern University Michael Petrides McGill University

Elizabeth Phelps New York University

Steven Pinker Harvard University

Russell Poldrack University of California, Los Angeles

Sarah Queller Indiana University

Garbiel Radvansky Notre Dame

Arthur Reber Brooklyn College, Graduate Center CUNY

Trevor Robbins
University of Cambridge

Herbert Roitblat

Carolyn Rovee-Collier Rutgers University—New Brunswick

Jerry Rudy University of Colorado

Linda Rueckert
Northeastern Illinois University

Richard Schiffrin Indiana University

David Shanks University College London

Sonya Sheffert Central Michigan University

Art Shimamura
University of California, Berkeley

Daphna Shohamy Columbia University

Shepard Siegel McMaster University Edward Smith Columbia University

Paul Smolensky Johns Hopkins University

Larry Squire University of California, School of Medicine, San Diego

Joseph Steinmetz Indiana University

Paula Tallal Rutgers University-Newark

Herbert Terrace Columbia University

Philip Tetlock University of California, Berkeley

Frederic Theunissen University of California, Berkeley

Richard Thompson University of Southern California

Endel Tulving University of Toronto

Barbara Tversky Stanford University

Anthony Wagner Stanford University, MIT

Jonathon Wallis University of California, Berkeley

Daniel Weinberger National Institutes of Health

Norman Weinberger University of California, Irvine

J. W. Whitlow, Jr.
Rutgers University—Camden

Bonnie Wright

Gardner-Webb University

Thomas Zentall University of Kentucky

All of our partners at Worth Publishers have been invaluable in realizing our highest hopes for this book. We came to Worth in large part because of Catherine Woods, our publisher, who is viewed by many as the preeminent publisher of psychology textbooks. Several of our colleagues who have written multiple textbooks for various publishers described her as the best publisher or editor they had ever worked with. As we discovered ourselves, Catherine has a well-deserved reputation for being a talented publisher who focuses her efforts on a few select books in which she believes deeply, and makes them the best they can possibly be. She has been a steady source of encouragement and leadership throughout this process.

Charles Linsmeier, Acquisitions Editor, is bar none, the best acquisitions editor with whom we have ever dealt. At each choice point in the book's development, Chuck always focused on making sure that every part of the content and production was as strong and compelling as possible. He cut no corners, and was always available for email and phone conversations, day or night (no small task when dealing with three independently-minded authors). His attention to every aspect of the project provided us with a trusted source of knowledge on the multitude of issues that arise as a book approaches publication. We consider our-

selves lucky to have had his guidance on this project.

Development Editor Mimi Melek is a brilliant, insightful, and delightful editor who served, in many ways, as our shadow fourth author. She attacked the manuscript at every level from deep conceptual meanings to the gloss of the style of our prose. By stepping back and seeing the whole project in one broad view, she served as our continuity editor, keeping all the pieces connected and woven into a seamless whole. Even when we thought a passage was as good as could be, a pass by Mimi would usually show us how that text could be made clearer, tighter, and usually much shorter. Working with her has been an education for each of us in how to write better for a student audience. Development Editors Moira Lerner and Elsa Peterson came on board to edit the final chapters and art, and lived up to the impossible standards set by our experience with Mimi. We appreciate all their contributions to the final book.

Associate Managing Editor Tracey Kuehn managed the production of the textbook and worked tirelessly to bring the book to fruition and keep it on schedule. Production Manager Sarah Segal's skill in producing a beautiful book allowed us to see a final product as visually appealing as we had hoped. Assistant

Editor Justin Kruger was efficient and helpful in every respect.

Babs Reingold, Art Director, is inspiring in her passionate commitment to artistic values. She stuck with us through many revisions and produced numerous alternatives to both the cover art and the internal design until we were all satisfied. Kevin Kall, Designer, and Lee Mahler, Layout Designer, united clarity with beauty in every chapter. Photo Editor Bianca Moscatelli and Photo Researcher Julie Tesser were relentless in tracking down and securing rights for all the various photos we wanted to illustrate key ideas and stories in the book.

Christine Ondreicka, Media and Supplements Editor, and Stacey Alexander, Production Manager, guided the development and creation of the supplements

package, making life easier for so many instructors.

Katherine Nurre, Executive Marketing Manager, and Carlise Stembridge, Associate Director of Market Development, quickly understood why we believe so deeply in this book and each contributed their tireless efforts to be relentless and persuasive advocates of this first edition with our colleagues across the country.

To Our Readers

The original plans for this book began to be formulated back in 2000, when Eddie Mercado was a postdoctoral fellow in Mark Gluck's lab at Rutgers University-Newark, working with Mark and Catherine on experimental and computational studies of animal and human learning. Over the last seven years—and especially the last three since we signed with Worth Publishers—creating this book has been a major focus of our professional lives. We tremendously enjoyed working on the book, collaborating with each other, and interacting with many scientists in the field of learning and memory who joined us in ways, small and large, to bring the book to its final form. We have learned much about our own field through the process of organizing the material and presenting it to you. We hope this book is as enjoyable and educational for you to read as it was for us to write.

BRIEF CONTENTS

Pre	eta	ce	xvi

CHAPTER 1	The Psychology of Learning and Memory
CHAPTER 2	The Neuroscience of Learning and Memory42
CHAPTER 3	Episodic and Semantic Memory: Memory for Facts and Events
CHAPTER 4	Skill Memory: Learning by Doing
CHAPTER 5	Working Memory and Executive Control
CHAPTER 6	Non-Associative Learning: Learning about Repeated Events
CHAPTER 7	Classical Conditioning: Learning to Predict Important Events
CHAPTER 8	Instrumental Conditioning: Learning the Consequences of Behavior
CHAPTER 9	Generalization, Discrimination, and the Representation of Similarity
CHAPTER 10	Emotional Learning and Memory381
CHAPTER 11	Observational Learning: Watching, Listening, and Remembering
CHAPTER 12	Learning and Memory across the Lifespan
CHAPTER 13	Language Learning: Communication and Cognition

Glossary G-1

References R-1

Name Index NI-1

Subject Index SI-1

Preface xvi

1 CHAPTER 1 The Psychology of Learning and Memory

Learning and Memory in Everyday Life: Top Ten Tips for a Better Memory 3

Philosophy of the Mind 4

Aristotle and Associationism 4

Descartes and Dualism 6

John Locke and Empiricism 7

William James and Models of Association 8

Evolution and Natural Selection 10

Erasmus Darwin and Early Proponents of Evolution 11

Charles Darwin and the Theory of Natural Selection 11

Francis Galton: Variability of Nature 13

Unsolved Mysteries: Can Learning Influence Evolution? 14

The Birth of Experimental Psychology 16

Hermann Ebbinghaus and Human Memory Experiments 16

Ivan Pavlov and Animal Learning 18

Edward Thorndike: Law of Effect 20

The Reign of Behaviorism 22

John Watson and Behaviorism 22

Clark Hull and Mathematical Models of Learning 24

B. F. Skinner: Radical Behaviorism 25

Edward Tolman: Cognitive Maps 27

The Cognitive Approach 28

W. K. Estes and Mathematical Psychology 29

Gordon Bower: Learning by Insight 31

George Miller and Information Theory 32

Herbert Simon and Symbol-Manipulation Models 34

David Rumelhart and Connectionist Models 35

43 CHAPTER 2 The Neuroscience of Learning and Memory

A Quick Tour of the Brain 44

The Brain and Nervous System 44

The Human Brain 46

Comparative Brain Anatomy 47

Learning without a Brain 48

Observing Brain Structure and Function 49

The Dark Ages of Brain Science 49

Structural Neuroimaging: Looking Inside the Living Brain 51

From Brain to Behavior 52

Information Pathways in the Central Nervous System 53

Behavior without the Brain: Spinal Reflexes 53

Incoming Stimuli: Sensory Pathways into the Brain 54

Outgoing Responses: Motor Control 55

Observing Brain Systems in Action 56

Clues from Human Neuropsychology 57

Experimental Brain Lesions 57

Functional Neuroimaging: Watching the Brain in Action 59

Unsolved Mysteries: What Do Functional Imaging Methods Really Measure? 62

Electroencephalography: Charting Brain Waves 63

Learning and Synaptic Plasticity 65

The Neuron 65

The Synapse: Where Neurons Connect 66
Neuromodulators: Adjusting the Message 68

Measuring and Manipulating Neural Activity 68

Recording from Neurons 68

Stimulating Neurons into Activity 70

Manipulating Neuronal Function with Drugs 71

Snynaptic Plasticity 72

Learning and Memory in Everyday Life: Can a Pill Improve Your Memory? 73

Long-Term Potentiation 74

How is LTP Implemented in a Neuron? 76

What is the Relationship of LTP to Learning? 77

Long-Term Depression 77

83 CHAPTER 3 Episodic and Semantic Memory: Memory for Facts and Events

Behavioral Processes 84

Episodic (Event) Memories and Semantic (Fact) Memories 84

Differences between Episodic and Semantic Memory 85

Which Comes First, Episodic or Semantic Memory? 86

Can Nonhumans Have Episodic Memory? 86

How Humans Acquire and Use Episodic and Semantic Memories 88

Memory Is Better for Information That Relates to Prior Knowledge 89

Deeper Processing at Encoding Improves Recognition Later 90

The Forgetting Curve and Consolidation 91

Transfer-Appropriate Processing 93

More Cues Mean Better Recall 94

When Memory Fails 94

Learning and Memory in Everyday Life: Total Recall! The Truth about

Extraordinary Memorizers 95

Interference 96

Source Amnesia 97

False Memory 98

Models of Semantic Memory 100

Brain Substrates 102

The Cerebral Cortex and Semantic Memory 102

The Medial Temporal Lobes and Memory Storage 104

The Hippocampal Region and Memory in Nonhuman Animals 105

Hippocampal Function in the Healthy Brain 107

Hippocampal-Cortical Interaction in Memory Consolidation 108

The Role of the Frontal Cortex in Memory Storage and Retrieval 110

Unsolved Mysteries: Are There Different Brain Substrates for Episodic

and Semantic Memory? 111

Subcortical Structures Involved in Episodic and Semantic Memory 113
The Diencephalon May Help Guide Consolidation 113
The Basal Forebrain May Help Determine What the Hippocampus Stores 114

Clinical Perspectives 115

Transient Global Amnesia 115 Functional Amnesia 116 Infantile Amnesia 117

125 CHAPTER 4 Skill Memory: Learning by Doing

Behavioral Processes 126

Qualities of Skill Memory 126 Perceptual-Motor Skills 127 Cognitive Skills 127 Expertise and Talent 130

Practice 133

Acquiring Skills 133 Implicit Learning 136

Unsolved Mysteries: Why Can't Experts Verbalize What They Do? 138

Retention and Forgetting 139
Transfer of Training 140
Models of Skill Memory 141
Motor Programs and Rules 141
Stages of Acquisition 142

Brain Substrates 144

The Basal Ganglia and Skill Learning 145
Learning Deficits after Lesions 146
Neural Activity during Perceptual-Motor Skill Learning 148
Brain Activity during Cognitive Skill Learning 150
Cortical Representations of Skills 151
Cortical Expansion 151

Learning and Memory in Everyday Life: Are Video Games Good for the Brain? 152

Are Skill Memories Stored in the Cortex? 154 The Cerebellum and Timing 155

Clinical Perspectives 158

Apraxia 159 Huntington's Disease 161 Parkinson's Disease 162

169 CHAPTER 5 Working Memory and Executive Control

Behavioral Processes 170

Transient Memories 170 Sensory Memory 170 Short-Term Memory 171

Transferring Information from Short-Term Memory to Long-Term Memory 172

Working Memory 173

Baddeley's Working-Memory Model 173

The Phonological Loop 174

The Visuo-Spatial Sketchpad 175

The Central Executive 177

Controlled Updating of Short-Term Memory Buffers 177

Setting Goals and Planning 180

Task Switching 180

Stimulus Selection and Response Inhibition 181

Unsolved Mysteries: Is Working Memory the Key to Intelligence? 182

Brain Substrates 183

Behavioral Consequences of Frontal Lobe Damage 184

Dysexecutive Syndrome and Working-Memory Deficits in Patients with Frontal-Lobe Damage 185

Functional Neuroanatomy of the Prefrontal Cortex 186

Frontal Brain Activity during Working-Memory Tasks 187

Mapping Baddeley's Model onto PFC Anatomy 189

Maintenance (Rehearsal) versus Manipulation (Executive Control) 190

The Visuo-Spatial and Phonological-Verbal Buffers 191

Prefrontal Control of Long-Term Declarative Memory 193

Clinical Perspectives 197

Schizophrenia 197

Attention Deficit/Hyperactivity Disorder (ADHD) 199

Learning and Memory in Everyday Life: Improving Your Working Memory 200

205 CHAPTER 6 Non-Associative Learning: Learning about Repeated Events

Behavioral Processes 206

Learning about Repeated Stimuli 206

The Process of Habituation 207

Learning and Memory in Everyday Life: Sex on the Beach 209

The Process of Sensitization 210

Priming 211

Perceptual Learning 212

Mere Exposure Learning 212

Discrimination Training 213

Spatial Learning 214

Models of Non-Associative Learning 217

Dual Process Theory 217

Comparator Models 218

Differentiation Theory 219

Brain Substrates 219

Invertebrate Model Systems 220

Habituation in Sea Slugs 221

Sensitization in Sea Slugs 222

Perceptual Learning and Cortical Plasticity 224

Cortical Changes after Mere Exposure 225

Cortical Changes after Training 227

Plasticity during Development 227

Hebbian Learning 228

Unsolved Mysteries: Why Did Cerebral Cortex Evolve? 229

The Hippocampus and Spatial Learning 230

Identifying Places 231

Place Fields Are Not Maps 232

Clinical Perspectives 234

Landmark Agnosia 234

Rehabilitation after Stroke 235 Man-Machine Interfaces 236

243 CHAPTER 7 Classical Conditioning: Learning to Predict Important Events

Behavioral Processes 244

Basic Concepts of Classical Conditioning 244

Varieties of Conditioning 245

Learning a New Association 249

Extinguishing an Old Association 249

Conditioned Compensatory Responses 251

What Cues Can Be CSs or USs? 252

Error Correction and the Modulation of US Processing 253

Kamin's Blocking Effect 253

The Rescorla-Wagner Model and Error-Correction Learning 254

Compound Conditioning 257

The Rescorla-Wagner Model Explains Blocking 260

Influence of the Rescorla-Wagner Model 261

From Conditioning to Category Learning 261

Cue-Outcome Contingency and Judgments of Causality 263

A Neural Network Model of Probabilistic Category Learning 264

Modulation of CS Processing 266

An Attentional Approach to Stimulus Selection 267

An Attentional Explanation of Latent Inhibition 267

Further Facets of Conditioning 268

Timing 268

Associative Bias and Ecological Constraints 270

Brain Substrates 271

Mammalian Conditioning of Motor Reflexes 272

Electrophysiological Recording in the Cerebellum 273

Brain Stimulation Substitutes for Behavioral Training 275

Conditioning Is Impaired When the Cerebellum Is Damaged 276

Inhibitory Feedback Computes Error Correction 277

The Hippocampus in CS Modulation 278

Unsolved Mysteries: Riding the Brain's Waves into Memory 279

Invertebrates and the Cellular Basis of Learning 280

Clinical Perspectives 284

Learning and Memory in Everyday Life: Kicking the Habit 287

293 CHAPTER 8 Instrumental Conditioning: Learning the Consequences of Behavior

Behavioral Processes 294

The "Discovery" of Instrumental Conditioning 294

Classical versus Instrumental Conditioning 295

Free-Operant Learning 295

Components of the Learned Association 297

Stimuli 298

Responses 299

Consequences 301

Putting It All Together: Building the S-R-C Association 303

Learning and Memory in Everyday Life: The Problem with

Punishment 304

Timing Affects Learning 305 Consequences Can Be Added or Subtracted 307 Schedules of Reinforcement 310

Unsolved Mysteries: Instinctive Drift 313

Choice Behavior 314

Variable-Interval Schedules and the Matching Law 314 Behavioral Economics and the Bliss Point 315 The Premack Principle: Responses as Reinforcers 316

Brain Substrates 318

The Basal Ganglia and Instrumental Conditioning 318
Mechanisms of Reinforcement in the Brain 319
Electrical Brain Stimulation 320
Dopamine and Reinforcement 321
Opioids and Hedonic Value 326

Clinical Perspectives 327

Drug Addiction 328 Behavioral Addiction 330 Treatments 331

337 CHAPTER 9 Generalization, Discrimination, and the Representation of Similarity

Behavioral Processes 338

When Similar Stimuli Predict Similar Consequences 338
Generalization as a Search for Similar Consequences 340
The Challenge of Incorporating Similarity into Learning Models 341
The Limitations of Discrete-Component Representations of Stimuli 343
Shared Elements and Distributed Representations 343
When Similar Stimuli Predict Different Consequences 347

Discrimination Training and Learned Specificity 348

Unsolved Mysteries: Why Are Some Feature Pairs Easier to

Discriminate between Than Others? 349

Negative Patterning: Differentiating Configurations from Their Individual Components 350

Configural Learning in Categorization 353

When Dissimilar Stimuli Predict the Same Consequences 355
Sensory Preconditioning: Similar Predictions for Co-occurring Stimuli 356
Acquired Equivalence: Novel Similar Predictions Based on Prior Similar
Consequences 357

Learning and Memory in Everyday Life: Stereotypes and Discrimination in Generalizing about Other People 358

Brain Substrates 361

Cortical Representations and Generalization 362
Cortical Representations of Sensory Stimuli 362
Shared-Elements Models of Receptive Fields 364
Topographic Organization and Generalization 366
Plasticity of Cortical Representations 367
Generalization and the Hippocampal Region 369
The Hippocampal Region 369
Modeling the Role of the Hippocampus in Adaptive Representations 370

Clinical Perspectives 371

Generalization Transfer and Hippocampal Atrophy in the Elderly 372 Rehabilitation of Language-Learning-Impaired Children 373