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This book describes a constructive approach to the inverse Galois problem:
Given a finite group G and a field K, determine whether there exists a Galois
extension of K whose Galois group is isomorphic to G. Further, if there is such
a Galois extension, find an explicit polynomial over K whose Galois group is
the prescribed group G.

The main theme of the book is an exposition of a family of “generic” poly-
nomials for certain finite groups, which give all Galois extensions having the
required group as their Galois group. The existence of such generic polyno-
mials is discussed, and where they do exist, a detailed treatment of their
construction is given. The book also introduces the notion of “generic dimen-
sion” to address the problem of the smallest number of parameters required
by a generic polynomial.
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Introduction

0.1. The Inverse Problem of Galois Theory

Let G be a finite group, and let K be a field. The Inverse Problem of Galois
Theory, as formulated for the pair (G, K), consists of two parts:

(A) General existence problem. Determine whether G occurs as a Galois
group over K. In other words, determine whether there exists a Galois exten-
sion M /K such that the Galois group Gal(M/K) is isomorphic to G.

We call such a Galois extension M a G-extension over K.

(B) Actual construction. If G is realisable as a Galois group over K, con-
struct explicit polynomials over K having G as a Galois group. More generally,
construct a family of polynomials over a K having G as Galois group.

The classical Inverse Problem of Galois Theory is the existence problem for
the field K = Q of rational numbers.

It would of course be particularly interesting if the family of polynomials we
construct actually gives all G-extensions of K. One obvious way of formulating
this is in the form of a parametric or generic polynomial:

DEFINITION 0.1.1. Let P(t, X) be a monic polynomial in K (t)[X], where t =
(t1,...,tn) and X are indeterminates, and let M be the splitting field of P(t, X)
over K(t). Suppose that P(t, X) satisfies the following conditions:

(i) M/K(t) is Galois with Galois group Gal(M/K (t)) ~ G, and
(ii) every Galois extension M/K with Gal(M/K) ~ G is the splitting field
of a polynomial P(a, X) for some a = (a,...,a,) € K™.
Then we say that P(t, X) parametrises G-extensions of K, and call P(t,X) a
parametric polynomial.

The parametric polynomial P(t,X) is said to be generic, if it satisfies the

following additional condition:

(iii) P(t,X) is parametric for G-extensions over any field containing K.

REMARK. The motivation for this definition is roughly speaking as follows:

Condition (i) ensures that we are in fact looking specifically at the structure of
G-extensions, cf. section 3.3 in Chapter 3, and are not getting the G-extensions
in (ii) merely by ‘degenerate’ specialisations. For instance: A cyclic extension
of degree 4 is of course the splitting field of a quartic polynomial. However, the
splitting field of an arbitrary quartic polynomial is unlikely to be cyclic.

Condition (ii) is a demand that the ‘family’ of G-extensions given by our
polynomial P(t, X) covers all G-extensions. This was, after all, the whole point.
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Condition (iii) expresses the experiental fact that our analysis and construc-
tion may well make use only of such properties of K as are inherited by larger
fields, saving us the trouble of having to analyse the situation over such fields
separately. Also, adopting an algebraic geometric viewpoint for a moment, that
the study of varieties over a field (which encompasses Galois theory through ex-
tensions of function fields) does not merely consider the rational points over the
ground field itself, but also those over extension fields.

The next natural question after (B) one may ask is thus:

(C) Construction of generic polynomials. Given K and G as above,
determine whether a generic polynomial exists for G-extensions over K, and if
so, find it.

REMARK. We point out that the definition of generic polynomials given here
is weaker than the one given by DeMeyer in [DM], where it is required that all
subgroups of G can be obtained by specialisations as well. However, over infinite
fields, the two concepts coincide (see Chapter 5).

The t;’s are the parameters of the generic polynomial. This raises a further
question:

(D) The Number of Parameters. What is the smallest possible number of
parameters for a generic polynomial for G-extensions over K ¢ (Again, assuming
existence.)

REMARKS. The existence problem (A) has been solved in the affirmative in
some cases. On the other hand, for certain fields, not every finite group occurs
as a Galois group.

(1) If K = C(t), where t is an indeterminate, any finite group G occurs
as a Galois group over K. This follows basically from the Riemann Existence
Theorem. More generally, the absolute Galois group of the function field K(t)
is free pro-finite with infinitely many generators, whenever K is algebraically
closed, cf. [Hrb2] and [Pop].

(2) If K =T, is a finite field, the Galois group of every polynomial over K is
a cyclic group.

(3) If K is a p-adic field, any polynomial over K is solvable, cf. e.g. [Lo2, §25
Satz 5).

(4) If K is a p-adic field, and K (¢) a function field over K with indeterminate ¢,
any finite group G occurs as a Galois group over K (t), by the Harbater Existence
Theorem [Hrbl].

REMARKS. Concerning the problem (C) about generic polynomials, some-
times results are known in greater generality than just for a single pair (G, K).

(1) The polynomial X? — X — ¢t is generic for cyclic extensions of degree p
over [, for all primes p, by Artin-Schreier theory. The polynomial X™ — ¢ is
generic for cyclic extensions of degree n over fields containing the primitive n'®
roots of unity, for all n € N, by Kummer theory.

(2) The polynomial X™ + ¢t; X"~ + ... + ¢, is generic for S,-extensions for
any field and any n € N, where S,, is the symmetric group on n letters. This



0.2. MILESTONES IN INVERSE GALOIS THEORY 3

indicates that we might (and should) try to find generic polynomials for families
of pairs (G, K), rather than focus on an individual pair (G, K).

(3) It is also of course trivial that the existence of generic polynomials over K
for groups G and H (not necessarily distinct) implies the existence of a generic
polynomial for the direct product G x H.

The Inverse Galois Problem is particularly significant when K is the field Q
of rational numbers (or, more generally, an algebraic number field), or a function
field in several indeterminatess over Q (or over an algebraic number field).

In this connection, an especially interesting version of the Inverse Problem
(over Q) concerns regular extensions: Let t = (¢1,t2,...,t,) be indeterminates.
A finite Galois extension M/Q(t) is then called regular, if Q is relatively alge-
braically closed in M, i.e., if every element in M \ Q is transcendental over Q.
The big question is then

The Regular Inverse Galois Problem. Is every finite group realisable as
the Galois group of a regular extension of Q(t)?

Whenever we have a Galois extension M/Q(t) (regular or not), it is an easy
consequence of the Hilbert Irreducibility Theorem (covered in Chapter 3 below)
that there is a ‘specialisation’ M/Q with the same Galois group. Moreover, if
M/Q(t) is regular, we get such specialised extensions M/K over any Hilbertian
field in characteristic 0, in particular over all algebraic number fields. Hence the
special interest in the Regular Inverse Galois Problem.

Concerning the existence problem (A), there are already several monographs
addressing the problem, e.g., Malle and Matzat [M&M2] and Vélklein [V6]. In
this book, our main aim is then to consider problem (C), the construction of
generic polynomials with prescribed finite groups as Galois groups.

The nature of the Inverse Problem of Galois Theory, in particular its con-
structive aspects, resembles that of the Diophantine problems, and it has been
an intractably difficult problem; it is still unsolved.

0.2. Milestones in Inverse Galois Theory

The Inverse Galois Problem was perhaps known to Galois. In the early nine-
teenth century, the following result was known as folklore:

THE KRONECKER-WEBER THEOREM. Any finite abelian group G occurs as
a Galois group over Q: Indeed G is realized as the Galois group of a subfield
of the cyclotomic field Q(C), where ¢ is an n'® root of unity for some natural
number n.

For proof, we refer to e.g. [Lo3, Ch. 13] (or indeed most books on class field
theory). For the first part (existence), it follows easily from the fact that there
are infinitely many primes = 1 (mod n) for any natural number n. For a simple
proof of this last statement, see [Hs3].

As for the actual construction, there were examples of polynomials realizing
abelian groups G as Galois groups over QQ, which were constructed using Gaussian
periods.



4 INTRODUCTION

The first systematic study of the Inverse Galois Problem started with Hilbert
in 1892. Hilbert used his Irreducibility Theorem (see Chapter 3) to establish the
following results:

THEOREM 0.2.1. For any n > 1, the symmetric group S,, and the alternating
group A, occur as Galois groups over Q.

Further, Hilbert constructed parametric polynomials for S,,, however, he was
not able to come up with parametric polynomials for A,. (Indeed, this problem
remains open even today.)

In 1916, E. Noether [Noe| raised the following question:

(0.2.2) THE NOETHER PROBLEM. Let M = Q(t1,...,t,) be the field of
rational functions in n indeterminates. The symmetric group S, of degree n
acts on M by permuting the indeterminates. Let G be a transitive subgroup of
Sy, and let K = MS be the subfield of G-invariant rational functions of M. Is K
a rational extension of Q% ILe., is K isomorphic to a field of rational functions
over Q¥

If the Noether Problem has an affirmative answer, G can be realised as a Galois
group over QQ, and in fact over any Hilbertian field of characteristic 0, such as
an algebraic number field (cf. section 3.3 of Chapter 3). Additionally, we get
information about the structure of G-extensions over all fields of characteristic 0
(cf. section 5.1 of Chapter 5).

The next important step was taken in 1937 by A. Scholz and H. Reichardt [Sco,
Rei] who proved the following existence result:

THEOREM 0.2.3. For an odd prime p, every finite p-group occurs as a Galois
group over Q.

The final step concerning solvable groups was taken by Shafarevich [Sha] (with
correction appended in 1989; for a full correct proof, the reader is referred to
Chapter IX of the book by Neukirch, Schmidt and Wingberg [NS&W, 2000]),
extending the result of Iwasawa [Iw] that any solvable group can be realized as
a Galois group over the maximal abelian extension Q®® of Q.

THEOREM 0.2.4. (SHAFAREVICH) FEvery solvable group occurs as a Galois
group over Q.

Shafarevich’s argument, however, is not constructive, and so does not produce
a polynomial having a prescribed finite solvable group as a Galois group.

Some remarks regarding simple groups. Of the finite simple groups, the
projective groups PSL(2,p) for some odd primes p were among the first to be
realized. The existence was established by Shih in 1974, and later polynomials
were constructed over Q(¢) by Malle and Matzat:

THEOREM 0.2.5. (a) (SHIH [Shi]) Let p be an odd prime such that either 2,
3 or 7 is a quadratic non-residue modulo p. Then PSL(2,p) occurs as a Galois
group over Q.
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(b) (MALLE & MATZAT [M&MI1]) Let p be an odd prime with p # +1
(mod 24). Then explicit families of polynomials over Q(t) with Galois group
PSL(2,p) can be constructed.

(c) (BELYI [Bell]) Let k be a finite field of odd characteristic, and let G be
SL(n,k), PSL(n,k), Sp(2n,k), SO(2n + 1,k), U(n,k), etc. Then there exist
finite extensions L O K of Q such that K/Q is abelian and L/K is Galois with
Galois group G.

Belyi (in [Bel2]) also realized simple Chevalley groups of certain types as
Galois groups over the maximal cyclotomic field.

For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu
group Mo3s, have been shown to occur as Galois groups over Q. For instance:

THEOREM 0.2.6. (MATZAT & AL.) Four of the Mathieu groups, namely My,
M2, Mgy and May, occur as Galois groups over Q.

Matzat and his collaborators further constructed families of polynomials over
Q(t) with Mathieu groups as Galois groups.

The most spectacular result is, perhaps, the realization of the Monster group,
the largest sporadic simple group, as a Galois group over Q by Thompson [Th].
In 1984, Thompson succeeded in proving the following existence theorem:

THEOREM 0.2.7. (THOMPSON) The monster group occurs as a Galois group
over Q.

Most of the aforementioned results dealt with the existence question (A) for
K=Q

Later several families of simple linear groups were realized as Galois groups
over Q (see Malle and Matzat [M&M2]).

It should be noted that all these realization results of simple groups were
achieved via the rigidity method (see section 0.7 below) and the Hilbert Irre-
ducibility Theorem (see Chapter 3).

0.3. The Noether Problem and Its History

In this monograph, we will be mostly concerned with constructive aspects of the
Inverse Galois Problem. We will be focusing on the question (C), construction
of generic polynomials having prescribed finite groups as Galois groups.

The Noether Problem (NP) concerning rational extensions over Q has a long
preceding history.

An extension L/K is called rational if there exists a transcendence basis
{Bi}ier such that L = K({B;}ic1), in which case L is K-isomorphic to the field
K ({t;}ier) of rational functions in the t;’s.

In 1875, Liiroth [Lii] (for a more contemporary reference, see Jacobson [Ja2,
8.14]) proved the following result:

THEOREM 0.3.1. (LUROTH) Let L/K be a rational field extension of tran-
scendence degree 1. Then any subfield of L containing K is either K or a rational
extension K (t) where t is an indeterminate.
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In this connection, there arose the so-called Liiroth problem:

(0.3.2) THE LUROTH PROBLEM. Let L be an arbitrary rational extension of
a field K. Is any subfield of L containing K rational over K7

Some positive answers to the Liiroth Problem were obtained. In 1894, Castel-
nuovo showed the following result:

THEOREM 0.3.3. (CASTELNUOVO [Cal]) Let K be algebraically closed of char-
acteristic 0. If L is a rational extension over K of transcendence degree 2, then
any subfield of L containing K is rational over K.

However, it was shown by Zariski [Z] in 1958 that this is no longer true if K
has positive characteristic.

To state more results on the Liiroth problem and related topics, we now
introduce the notion of unirational and stably rational extensions of fields.

A field extension L/K is said to be unirational if L is a subfield of a rational
extension of K, and stably rational if L(uj,us,...,u,) is rational over K for
some 7, that is, if L becomes rational over K after adjoining a finite number of
indeterminates.

In geometric terms an irreducible algebraic variety defined over K is ratio-
nal, resp. unirational, resp. stably rational if its fields of rational functions is a
rational, resp. unirational, resp. stably rational extension of K.

Clearly, we have the following implications:

rational = stably rational = unirational.

However, the arrows are not reversible. The first candidates for examples show-
ing that ‘unirational’ does not imply ‘rational’ were discussed by Enriques [En]
in 1897, and G. Fano [Fn] in 1904. The first correct and well-documented ex-
amples are due to B. Segre, who considered smooth cubic surfaces X C P} and
wrote a series of papers on that subject in the decade 1940-1950. He proved that
such a surface is unirational if it has a K-rational point. His simplest example
of a unirational but non-rational surface is a smooth cubic surface X/K over
K = R such that the topological space X (R) has two connected components.
See [Sgl], as well as [Sg2].

The first example of a stably rational but not rational extension was given by
Beauville, Colliot-Théléne, Sansuc and Swinnerton-Dyer [Be&al]. Their example
is a non-rational surface which is stably rational over Q. We will give an example
of a field which is unirational but not stably rational on p. 57 in Chapter 2.

We should here mention some other known examples of unirational but not
rational extensions. Segre (cited above) gave examples of unirational but not
rational surfaces, developing along the way the theory of linear systems with
base points. Clemens and Griffiths (in [C&G]) constructed the intermediate
Jacobian of the cubic threefold. This Jacobian is a unirational but not a ratio-
nal variety over C. Another example was constructed by Iskovskih and Manin
[I&M] as a counterexample to the Liiroth Problem, using generalization of the
theory of linear systems with base points. Their example was a quartic threefold
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in P* over C. For non-algebraically closed fields, there are several articles ad-
dressing non-rationality question of varieties (mostly surfaces). Also, elementary
examples were given by Artin and Mumford in [Ar&M]. We are not going into
a detailed discussion of those examples, but refer the interested reader to the
papers cited above, as well as Ojanguren [Oj], and the references therein.

The Liiroth Problem led to a related problem. Let G be a finite group acting
faithfully on L/Q (i.e., G is a group of automorphisms of L fixing the base field
Q), and pick a special subfield of L, namely the fixed field LS. Then the Liiroth
Problem in this context is the Noether Problem (NP) formulated in (0.2.2) for
K = Q. Prior to Noether, Burnside considered the problem concerning the
fixed point fields of automorphisms of rational function fields (which later was
popularised by the name of ‘the Noether Problem’), and he obtained several
results:

THEOREM 0.3.4. (BURNSIDE 1908, [Bs]) The fized field of Cs acting requ-
larly on K(t1,ta,t3) is rational over K provided that K contains the third roots
of unity. Similarly, the fized field of A4 acting regularly on K(ti,ta,t3,ts) is
rational (under some conditions on the ground field K ).

By the classical theorem that any symmetric rational function is a rational
function in the elementary symmetric polynomials, it follows that the Noether
Problem has a positive answer for the symmetric group S,,. E. Noether and
some of her contemporaries gave positive answers for several other groups of
small degree. Here are some results for solvable groups:

THEOREM 0.3.5. (a) (FURTWANGLER 1925, [Fu]) The Noether Problem has
a positive solution for every solvable transitive subgroup G of Sp,, where p =
3,5,7,11, for K = Q and G acting as a regular permutation group of the inde-
terminates t1,...,tn, n = |G|.

(b) (GROBNER 1934, [Grd]) The Noether Problem has a positive answer for
the quaternion group Qs.

For the alternating groups A,,, the Noether Problem is still open: For A5 the
answer is affirmative, and this was proved by Maeda [Mae] in 1989. However,
for A,, n > 6, the answer remains unknown.

It turns out that the Noether Problem does not always have a positive answer.
This raises yet another question: For which groups G does it fail to have an
affirmative solution?

In 1925, Furtwéngler noticed that his argument (proving point (a) in the The-
orem above) did not work for the cyclic group Cs7. Swan and V. E. Voskresenskii
(working independently) gave counter-examples to the Noether Problem for the
cyclic groups Cy7, C113, Caas, etc., in their papers [Swnl, 1969] and [Vol, 1970].
Later, more conceptual and accessible, and also stronger, results were obtained
by H. Lenstra [Len]: For instance, he shows that the smallest group for which
the Noether Problem fails is the cyclic group Cg, and further he gave a complete
classification of abelian groups for which the Noether Problem fails. (See also
Saltman [Sal, 1982].)



8 INTRODUCTION

0.4. Strategies

As we mentioned above, a positive solution to the Noether Problem for a finite
group G over Q yields a positive solution to the question (A), concerning the
existence of a G-extension, and moreover it gives rise to a positive answer to the
question (C), about generic polynomials. We will push Noether’s strategy to its
fuller extent.

Noether’s strategy: Invariant theory. Noether’s strategy may work well
for the symmetric groups S,, but as we have seen above, it becomes complicated
for other groups, even of small order.

Closer analysis concerning the existence (and construction) of polynomials
with Galois group G turns out to be more productive if we consider generalisa-
tions of the original Noether Problem. Of course, the Noether Problem can be
formulated over any field, rather than just Q. Also we may take different actions
of G on the function fields.

Let K be any field and let M = K(t,t2,...,t,) be the field of rational
functions over K in n indeterminates t = (t1,%2,...,t,). Let G be a finite
group. Depending on the action of G on the field M, we have several variants
of the Noether Problem. We now formulate the Noether Problem (NP), Linear
Noether Problem (LNP), and General Noether Problem (GNP) depending on
the action of G.

(0.4.1) THE NOETHER PROBLEM (NP). Assume that G acts on M as a
transitive permutation group on the set t = (¢1,t2,...,t,) of indeterminates,
and let L = M©. Is L rational over K?

(0.4.2) THE LINEAR NOETHER PROBLEM (LNP). Let G be a (finite) sub-
group of GL,(K), and define a G-action on M by ot; = a1;t1 + - - + anst, when
(@14, ...,an;) € K™ is the image of the i*" canonical basis vector under o. Let
L = MS. Is L rational over K?

(0.4.3) THE GENERAL NOETHER PROBLEM (GNP). Let G be a (finite)
subgroup of the K-automorphism group Autg (M), and let L = M%. Is L
rational over K7

The inclusions are NP ¢ LNP c GNP.

From now on we assume that our ground field K is infinite. We note that, by
a Theorem of Kuyk [Ku, Thm. 1], an affirmative answer to the Noether Problem
(NP) for a group G over an infinite field K implies the existence of a generic
polynomial for G-extensions over K (cf. also section 5.1 in Chapter 5).

Now we will encode various implications in the following diagram. We consider
a pair (G, K) where we assume that G is a finite group and K is an infinite field.

NP = Generic Poly = Regular Ext (:>) Galois Ext

f fr

LNP GNP



