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Preface to the Second Edition

The first edition of this book was originally published in 1985 under the ti-
tle “Probabilistic Properties of Deterministic Systems.” In the intervening
years, interest in so-called “chaotic” systems has continued unabated but
with a more thoughtful and sober eye toward applications, as befits a ma-
turing field. This interest in the serious usage of the concepts and techniques
of nonlinear dynamics by applied scientists has probably been spurred more
by the availability of inexpensive computers than by any other factor. Thus,
computer experiments have been prominent, suggesting the wealth of phe-
nomena that may be resident in nonlinear systems. In particular, they
allow one to observe the interdependence between the deterministic and
probabilistic properties of these systems such as the existence of invariant
measures and densities, statistical stability and periodicity, the influence
of stochastic perturbations, the formation of attractors. and many others.
The aim of the book. and especially of this second edition, is to present
recent theoretical methods which allow one to study these effects.

We have taken the opportunity in this second edition to not only correct
the errors of the first edition, but also to add substantially new material in
five sections and a new chapter. Thus. we have included the additional dy-
namic property of sweeping (Chapter 5) and included results useful in the
study of semigroups generated by partial differential equations (Chapters
7 and 11) as well as adding a completely new Chapter 12 on the evolution
of distributions. The material of this last chapter is closely related to the
subject of iterated function systems and their attractors-fractals. In addi-
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tion, we have added a set of exercises to increase the utility of the work for
graduate courses and self-study.

In addition to those who helped with the first edition, we would like to
thank K. Alligood (George Mason), P. Kamthan, J. Losson, I. Nechayeva.
N. Provatas (McGill), and A. Longtin (Ottawa) for their comments.

AL
M.C.ML



Preface to the First Edition

This book is about densities. In the history of science. the concept of den-
sities emerged only recently as attempts were made to provide unifying de-
scriptions of phenomena that appeared to be statistical in nature. Thus. for
example, the introduction of the Maxwellian velocity distribution rapidly
led to a unification of dilute gas theory; quantum mechanics developed
from attempts to justify Planck's ad hoc derivation of the equation for the
density of blackbody radiation:; and the field of human demography grew
rapidly after the introduction of the Gompertzian age distribution.

From these and many other examples, as well as the formal development
of probability and statistics, we have come to associate the appearance of
densities with the description of large systems containing inherent elements
of uncertainty. Viewed from this perspective one might find it surprising
to pose the questions: “What is the smallest number of elements that a
system must have, and how much uncertainty must exist, before a descrip-
tion in terms of densities becomes useful and/or necessary?” The answer is
surprising, and runs counter to the intuition of many. A one-dimensional
system containing only one object whose dynamics are completely deter-
ministic (no uncertainty) can generate a densirty of states! This fact has
only become apparent in the past half-century due to the pioneering work
of E. Borel {1909], A. Rényi [1957], and S. Ulzm and J. von Neumann.
These results, however. are not generally known outside that small group
of mathematicians working in ergodic theory.

The past few years have witnessed an expicsive growth in interest in
physical. biological. and economic systems that could be profitably studied
using densities. Due to the general inaccessibilitv of th2 mathematical lit-
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erature to the nonmathematician, there has been little diffusion of the con-
cepts and techniques from ergodic theory into the studyv of these “chaotic”
svstems. This book attempts to bridge that gap.

Here we give a unified treatment of a variety of mathematical systems
generating densities, ranging from one-dimensional discrete time trans-
formations through continuous time systems described by integro-partial-
differential equations. We have drawn examples from a variety of the sci-
ences to illustrate the utility of the techniques we present. Although the
range of these examples is not encyclopedic. we feel that the ideas presented
here may prove useful in a number of the applied sciences.

This book was organized and written to be accessible to scientists with
a knowledge of advanced calculus and differential equations. In various
places, basic concepts from measure theory. ergodic theory, the geometry
of manifolds, partial differential equations. probability theory and Markov
processes, and stochastic integrals and differential equations are introduced.
This material is presented only as needed. rather than as a discrete unit
at the beginning of the book where we felt it would form an almost insur-
mountable hurdle to all but the most persistent. However, in spite of our
presentation of all the necessary concepts. we have not attempred to offer
a compendium of the existing mathematical literature.

The one mathematical technique that touches every area dealt with is the
use of the lower-bound function (first introduced in Chapter 5) for proving
the existence and uniqueness of densities evoiving under the action of a
variety of systems. This, we feel, offers some partial unification of results
from different parts of applied ergodic theory.

The first time an important concept is presented, its name is given in
bold type. The end of the proof of a theorem, corollary, or proposition is
marked with a B; the end of a remark or example is denoted by a O.

A number of organizations and individuals have materially contributed
to the completion of this book.

In particular the National Academy of Sciences (U.S.A.), the Polish
Academy of Sciences, the Natural Sciences and Engineering Research Coun-
cil (Canada), and our home institutions. the Silesian University and McGill
University, respectively, were especially helpful.

For their comments, suggestions, and friendly criticism at various stages
of our writing, we thank J. Bélair (Montreal), U. an der Heiden (Bre-
men), and R. Rudnicki (Katowice). We are especially indebted to P. Bugiel
(Krakow) who read the entire final manuscript. offering extensive mathe-
matical and stylistic suggestions and improvements. S. James (McGill) has
cheerfully. accurately, and tirelessly reduced several rough drafts to a final
typescript.



Contents

Preface to the Second Edition vii
Preface to the First Edition ix
1 Introduction 1
1.1 A Simple System Generating a Density of States 1

1.2 The Evolution of Densities: An Intuitive Point of View 3

1.3 Trajectories Versus Densities 9
Exercises 13

2 The Toolbox 17
2.1  Measures and Measure Spaces 17

2.2 Lebesgue Integration 19

2.3 Convergence of Sequences of Functions 31
Exercises 35

od

3 DMarkov and Frobenius—Perron Operators 7

3.1 Markov Operators i

3.2 The Frobenius-Perron Operator 41

3.3 The Koopman Operator 47
Exercises 49

4 Studying Chaos with Densities 51

4.1 Invariant Measures and Measure-Preserving
Transformartions 51



xii

Contents

4.2
4.3
4.4

4.5

Ergodic Transformations

Mixing and Exactness

Using the Frobenius-Perron Koopman Operators for
Classifying Transformations

Kolmogorov Automorphisms

Exercises

The Asymptotic Properties of Densities

5.1
5.2
5.3
0.4
5.5
5.6
5.7
5.8
5.9
5.10

Weak and Strong Precompactness

Properties of the Averages A, f

Asymptotic Periodicity of {P"f}

The Existence of Stationary Densities

Ergodicity, Mixing, and Exactness

Asymptotic Stability of {P™}

Markov Operators Defined by a Stochastic Kernel
Conditions for the Existence of Lower-Bound Functiorns
Sweeping

The Foguel Alterative and Sweeping

Exercises

The Behavior of Transformations on Intervals
and Manifolds

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Functions of Bounded Variation
Piecewise Monotonic Mappings

Piecewise Convex Transformations with a Strong Repellor

Asymptotically Periodic Transformations
Change of Variables

Transformations on the Real Line
Manifolds

Expanding Mappings on Manifolds
Exercises

Continuous Time Systems: An Introduction

Tl
7.2
7.3

7.4

Two Examples of Continuous Time Systems
Dynamical and Semidynamical Systems

Invariance, Ergodicity. Mixing, and Exactness in
Semidynamical Systems

Semigroups of the Frobenius—Perron and Koopman
Operators

Infinitesimal Operators

Infinitesimal Operators for Semigroups Generated by
Systems of Ordinary Differential Equations
Applications of the Semigroups of the Frobenius—Perron
and Koopman Operators

The Hille-Yosida Theorem and Its Consequences

85
86
88
95
100
102
105
112
123
125
129
136

139
139
144
153
156
165
172
175
183
187

189

190
191

199
205

210



10

7.10

=1
b
B

o

Contents

Further Applications of the Hille-Yosida Theorem
The Relation Between the Frobenius—Perron and
Koopman Operators

Sweeping for Stochastic Semigroups

Foguel Alternative for Continuous Time Systems
Exercises

Discrete Time Processes Embedded in Continuous
Time Systems

8.1  The Relation Between Discrete and Continuous Time
Processes

8.2  Probability Theory and Poisson Processes

8.3  Discrete Time Systems Governed by Poisson Processes

8.4  The Linear Boltzmann Equation: An Intuitive
Point of View

8.5  Elementary Properties of the Solutions of the Linear
Boltzmann Equation

8.6 Further Properties of the Linear Boltzmann Equation

R.7  Effect of the Properties of the Markov Operator on
Solutions of the Linear Boltzmann Equation

8.3  Linear Boltzmann Equation with a Stochastic Kernel

8.2  The Linear Tjon-Wu Equation
Exercises

Entropy

9.1  Basic Definitions

9.2  Entropy of P*f When P is a Markov Operator

9.3  Entropy H(P"f) When P is a Frobenius—Perron
Operator

9.4  Behavior of P"f from H(P™f)

Exercises

Stochastic Perturbation of Discrete Time Systems

10.1
10.2
10:3
10.4
10.5
10.0

10.7

Independent Random Variables

Mathematical Expectation and Variance

Stochastic Convergence

Discrete Time Systems with Randomliy Applied
Stochastic Perturbations

Discrete Time Systems with Constantly Applied
Stochastic Perturbations

Small Continuous Stochastic Perturbations of Discrete
Time Systems

Discrete Time Systems with Multiplicative Perturbations
Exercises

xaii

241
244
246
247

[SUR SO SO I S

o o
on ou 00
© &L W

(3]
O
o

395
300

303
304
306
311

320

327
330
333



xiv Contents

11 Stochastic Perturbation of Continuous Time Systems

11.1
11.2
11.3
11.4
11.5
11.6
11.7

11.8

11.9

11.10

11.11
11.12

One-Dimensional Wiener Processes (Brownian Motion)
d-Dimensional Wiener Processes (Brownian Motion)
The Stochastic Ité Integral: Development

The Stochastic Tt Integral: Special Cases

Stochastic Differential Equations

The Fokker—Planck (Kolmogorov Forward) Equation
Properties of the Solutions of the Fokker—Planck
Equation

Semigroups of Markov Operators Generated by Parabolic

Equations

Asymptotic Stability of Solutions of the Fokker—Planck
Equation

An Extension of the Liapunov Function Method

"Sweeping for Solutions of the Fokker-Planck Equation

Foguel Alternative for the Fokker-Planck Equation
Exercises

12 Markov and Foias Operators

12.1 The Riesz Representation Theorem

12.2 Weak and Strong Convergence of Measures

12.3  Markov Operators

12.4 Foias Operators

12.5 Stationary Measures: Krylov—Bogolubov Theorem for
Stochastic Dynamical Systems

12.6 Weak Asymptotic Stability

12.7  Strong Asymptotic Stability

12.8 Iterated Function Systems and Fractals
Exercises

References

Notation and Symbols

Index

3

Ol
o W
~ v QY

W L w (@S]
e OOy .(rf )
Qv oy l

o0

LW w w
‘o N
Qs

)



1

Introduction

We begin by showing how densities may arize from the operation of a one-
dimensional discrete time system and how :he study of such systems can
pe facilitated by the use of densities.

If a given system operates on a density as an initial condition, rather than
on a single point, then successive densities are given by a linear integral
operartor, known as the Frobenius—Perron operator. Our main objective in
this chapter is to offer an intuitive interprezation of the Frobenius-Perron
operator. We make no attempt to be mathematically precise in either our
language or our arguments.

The precise definition of the Frobenius-Perzon operator is left to Chapter
3, while the measure-theoretic background necessary for this definition is
presented in Chapter 2.

1.1 A Simple System Generating a Density of
States

One of the most studied systems capable of zenerating a density of states
is that defined by the quadratic map

S(z) =az(l — 1) for )<z <1. (1.1.1)

We assume that @ = 4 so S maps the closec unit interval [0, 1] onto itself.
This is also expressed by the saying that the state (or phase) space of the
svstezn is 10,11 The graph of this transforsiszion iv shown in Fig. 1.1 1a.
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X

20C

FIGURE 1.1.1. The quadratic transformation (1.1.1) with @ = 4 is shown in
(a). In (b) we show the trajectory (1.1.2) determined by (1.1.1) with z° = 7 /10.
Panel (c) illustrates the sensitive dependence of trajectories on initial conditions
by using z° = (7/10) +0.001. In (b) and (c), successive points on the trajectories
have been connected by lines for clarity of presentation.

Having defined S we may pick an initial point z° € [0,1) so that the
successive states of our system at times 1.2, ... are given by the trajectory

29, 5(z), §2(z°) = S(5(z%)), ... . (1.1.2)

A typical trajectory corresponding to a given initial state is shown in Figure
1.1.1b. It is visibly erratic or chaotic, as is the case for almost all z°. What

is even worse is that the trajectory is significantly altered by a slight change
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FIGURE 1.1.2. The histogram constructed according to equation (1.1.3) with
n =20, N = 5000, and z° = 7/10.

in the initial state, as shown in Figure 1.1.1c for an initial state differing
by 1072 from that used to generate Figure 1.1.1b. Thus we are seemingly
faced with a real problem in characterizing systems with behaviors like that
of (1.1.1).

By taking a clue from other areas, we might construct a histogram to
displav the frequency with which states along a trajectory fall into given
regions of the state space. This is done in the following way. Imagine that
we divide the state space [0, 1] into n discrete nonintersecting intervals so
the ith interval is (we neglect the end point 1)

((i—1)/n,i/n) i=1,...,0.
Next we pick an initial system state z° and calculate a long trajectory
2 Sy, 842, . ... S0 (=)

of length NV where NV >> n. Then it is straightforward to determine the
fraction, call it f;, of the .V system states that is in the ith interval form

i = %{number of $7(z%) € [(i = 1)/n,i/n), j=1,...,N}.  (L13)

We have carried out this procedure for the initial state used to generate
the trajectory of Figure 1.1.1b by taking n = 20 and using a trajectory of
length .V = 5000. The result is shown in Figure 1.1.2. There is a surprising
symmetry in the result, for the states are clearly most concentrated near 0
and 1 with a minimum at % Repeating this process for other initial states
leads, in general, to the same result. Thus. in spite of the sensitivity of
trajectories to initial states, this is not usually reflected in the distribution
of states within long trajectories.

However, for certain select initial states, different behaviors may occur.
For some initial conditions the trajectory might arrive at one of the fixed
points of equation (1.1.1), that is, a point z. satisfying

z.=S(r.).



