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Preface

This book is designed for a course in mathematics that assumes a background of in-
termediate algebra and plane geometry and progresses through introductory topics
in the calculus of elementary functions of one variable. The subject matter is or-
ganized so as to provide a background for courses in linear algebra, abstract algebra,
and finite mathematics as well as courses in analysis. The presentation attempts to
bring more unity to the subject matter than is usually the case at this level of
treatment. Hopefully, the student is given a feeling for the relatedness of mathemat-
ical ideas rather than simply an exposure to a miscellany of techniques.

Elementary logic is introduced informally with a minimum of symbolism and
then used consistently in the subsequent developments. The study of the real
number system involves some general notions of the structure of an abstract
system. The structures of other systems such as matrices and subsets of a set are
obtained, compared, and applied to the solutions of linear systems and discrete
probability.

The elementary functions are approached as real mappings. Then the
properties of trigonometric, exponential, and logarithmic functions evolve from
the properties of the reals. Polynomials are treated both as algebraic forms and
as functions. An introduction to Euclidean vector space allows a richer treatment
of analytic geometry of lines and planes.

To motivate calculus, the problem of area is posed first. A development of
sequences and series then leads to the definite integral. Thus a student is grounded
in the definition of the definite integral before the introduction of the derivative
and the antiderivative. Limits of functions are defined carefully, and then the
problem of tangents is used to motivate the derivative. Procedures of the calculus
are then applied to a variety of physical and geometric problems. In this context
the conic sections and other aspects of analytic geometry are treated.
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We wish to emphasize that the choice of topics and their ordering have been
guided by the desire to establish a flow of mathematical ideas rather than a succes-
sion of isolated topics. A concept is presented only if it contributes to the general
development of the subject matter or if it illustrates an idea that has been
established.

As one example of this continuity of ideas, matrices arise out of the need for
a systematic method of solving linear systems. Then the properties of operations
on matrices provide an illustration of a noncommutative ring. Determinants are
needed to answer the question of the existence of inverses of square matrices.
Subsequently matrices are used in the study of relations and as representations
of the linear mappings of the plane.

At an introductory level this text can be used with various categories of
students. For a complete beginning course for pre-science students most of the
topics could be covered in a one-year course. For other types of students the
following choices are suggested.

A liberal arts course, for two semesters:

Chapters 1, 2, 3 (omitting Sections 3-1 and 3-6),4, 5, 6, 7, 10, 11, 12, 13, 14
A course prerequisite to linear or abstract algebra, for one semester :
Chapters 1, 2, 3,4, 5,7, 11

A course in finite mathematics, for one semester:
Chapters 1, 2,4, 5,6, 7, 11

A course introductory to analysis, for one semester :
Chapters 1, 2, 3,7, 8,9, 10, 11

We acknowledge the helpful cooperation of our colleagues at Franklin and
Marshall College in using portions of the book in mimeographed form in a
variety of situations. Their comments and the reactions of the students were vital
factors in the molding of the present version.

V.H.H. and D.W.W.

March 1968
Lancaster, Pennsylvania
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1-1 INTRODUCTION

1-2 INFORMAL
LOGIC OF SETS

This chapter is intended to help the reader organize his thinking into logical
patterns and show him how to state exactly what he means. The logical principles
and the terminology introduced for this will be used in the development of the
following topics.

The classifying of things into sets or classes is common. Some sets of people are:
all persons enrolled for mathematics courses at accredited colleges; all citizens
of the United States; all playing members of the San Francisco Giants ; all persons
of age 30 years or less; all persons over 10 feet tall. Some other sets are: all ink
bottles in the White House; all ball-point pens that do not work; all possible
rectangles in a plane; all even integers; all positive integers.

Some of the sets listed can be counted. During the regular baseball season
the set of players in a National League team, such as the Giants, has 25 members.
On the other hand, the set of all possible rectangles in a plane cannot be counted.
The set of all people over 10 feet tall possibly has no members. A set having no
members is called an empty set or a null set and denoted by the Greek letter ¢ (phi).

The word element designates an individual member of a set. When elements
of one set may also be elements of another, various relationships exist between
the sets. The set of all even integers is a subset of the set of all integers, since every
even integer is also an integer. The set of all freshmen at a particular college is a
subset of the total student body of that college. The set of all members of a mathe-
matics class is not a subset of all freshmen if an upperclassman is in the class. In
effect, one set is a subset of another, provided that every element of the one is also
an element of the other. (More formal definitions will follow in Sections 1-9 and
5-1. For the present we shall rely on informal descriptions.)

Some concepts of deductive logic can be introduced informally with reference
to relationships between sets. For instance, consider the following examples.
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EXAMPLE 1
1. All rectangles are parallelograms.
2. All parallelograms are polygons.
3. All rectangles are polygons.

Each statement in Example 1 deals with two sets and makes an assertion
about the relationship between their elements. Now, consider all three statements
together and think about their implications. Even a person unacquainted with the
meanings of the nouns in italics feels compelled to accept statement 3 as inescap-
able from the evidence given in statements 1 and 2. Statements 1 and 2 together,
when used as evidence in this way, are called the hypothesis. Is statement 1 an
inescapable conclusion from statements 2 and 3 taken as the hypothesis?

On the basis of plane geometry each statement in Example 1 is true. But the
truth or falsity of statements is less important at this point than the pattern of
reasoning which leads us to inescapable conclusions. This pattern becomes more
evident when we substitute symbols or undefined terms for the nouns.

EXAMPLE 2 EXAMPLE 3
1. All x’s are y’s. 1. All marfets are trilos.
2. All y’s are z’s. 2. All trilos are scarpuls.
3. All x’s are z’s. 3. All marfets are scarpuls.

In these examples again, statement 3 is forced upon us as an inescapable
conclusion if we grant the evidence given in statements 1 and 2. There can be no
question of the truth or falsity of the individual statements, because in Example
2 only symbols of arbitrary classes are used, and in Example 3 unfamiliar and
undefined names are used. Still a framework of reasoning remains that suggests

3
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the formulation of certain fundamental rules of logic. Every mathematical argu-
ment must start by agreeing on the use of undefined terms and rules of reasoning.
Once these have been accepted, the process of arriving at inescapable conclusions
from a stated hypothesis is called deductive reasoning.

Example 4 illustrates that, even with a simple hypothesis, it is not always easy
to decide what inescapable conclusions, if any, follow.

EXAMPLE 4
1. All marfets are trilos. a. No rancels are marfets.
2. No trilos are scarpuls. b. Some rancels are not marfets.
3. Some rancels are scarpuls. c. No marfets are scarpuls.

Which, if any, of statements (a), (b), and (c) are inescapable conclusions from
statements 1, 2, and 3 taken together as the hypothesis? The student should work
this out to his own satisfaction before continuing.

As notation for the study of the logic of sets we denote an arbitrary class or
set by a capital letter such as X and any element of the set by the corresponding
small letter x. Diagrams representing sets and the relations among them provide
an intuitive approach to the rules of reasoning about sets. Represent X by the
interior of a closed curve and the elements of X by points within the enclosure.
Then relationships among sets involved in statements can be represented by
relationships among enclosures. Example 2 then appears as follows.

EXAMPLE 2 (Continued) |
. Z

All x's are y's All y's are z's All x's are z's

Figure 1-1

Since the X enclosure necessarily falls inside the Z enclosure, every point repre-
senting an x must be a point representing a z and statement 3 thus becomes an
inescapable conclusion (see Figure 1-1).

Such diagrams are called Euler diagrams after the famous Swiss mathe-
matician Leonhard Euler (1707-1783). They are also called Venn diagrams after
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John Venn (1834-1923), an English mathematician interested in probability and
logic.

At once we ask, ‘““What criterion can be made for the use of Euler diagrams
in deductive reasoning?’” Intuition about geometric figures leads to some common
agreements. First, most of the statements we have made about sets appear in one
of the following forms or can be expressed in one of these forms.

A. All x’s are y’s. C. Some x’s are y’s.
B. No x’s are y’s. D. Some x’s are not y’s.

In a given discussion we usually think of each set as a subset of a total set of
elements called a universe or population, denoted by the letter I. In Example 1,
rectangles, parallelograms, and polygons may each be thought of as subsets of the
set of all plane geometric figures. The elements of a given universe not in a specified
set belong to the complement of that set. If X denotes a set, then the elements of /
not in X are in the complement of X. We denote the complement of X by X and an
element of X by X. In a diagram the points outside the X enclosure, but inside the
universe enclosure, constitute X, and we call an element X in X a “‘not x.”

In agreeing on the possible diagrams for statements (A), (B), (C), and (D), we
must understand clearly the meanings of the words used in the statements. “*All”
may be replaced by ““every,” ““each,” or “any.” ““Some’” means ‘“‘at least one and
possibly all.”” This differs from the ordinary use of “‘some,”” which does not usually
include ““possibly all.”” Statement (B) could be written in the form,

All x’s are not y’s.

The possible Euler diagrams for statements (A), (B), (C), and (D) appear in
Figure 1-2. (See page 6.) In each case the rectangular region represents the universe.
In statements (C) and (D) the dot represents the minimal element needed to satisfy
the word “some.”

Valid reasoning about sets, then, is the process of obtaining those conclusions
which are inescapable in the sense that they follow from every possible correct Euler
diagram. Such a conclusion is called a valid conclusion. Just one correct diagram
for which a given conclusion does not hold is enough to show that the reasoning
that claims this conclusion to be inescapable is not valid ; that is, the reasoning is
invalid.

REMARK: The process of drawing Euler diagrams, however, can never
guarantee that we have found a valid conclusion, because we are never sure
that every possible diagram has been drawn. The diagrams, however, do
aid us in deciding about conclusions that appear to be valid. We can be sure
that a conclusion is not valid when we have found one diagram that contra-
dicts it.
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A.All x's are y's B.No x's are y's

C.Some x's are y's

D. Some x's are not y's

Figure 1-2

EXAMPLE 5
HYPOTHESIS: 1. All marfets M are trilos T.

2. No trilos are scarpuls S.
CONCLUSION: No marfets are scarpuls.

In both diagrams that may be drawn to fit the hypothesis (Figure 1-3),
the M and the S enclosures do not overlap. Hence, the conclusion seems to be
valid.

Possibility 1 Possibility 2
Figure 1-3



