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Preface

“Make everything as simple as possible, but not
simpler.”

Albert Einstein

Developed for pattern recognition and later extended to multivariate
regression, support vector machines (SVMs) were originally proposed by
Vapnik et al. and seem a very promising kernel-based machine-learning
method. What distinguishes SVMs from traditional learning methods, in
our opinion, lies in their exclusive objective function, which minimizes
the structural risk of the model. The introduction of the kernel function
into SVMs made the method extremely attractive, because it opened
a new door for chemists and biologists to use SVMs to solve difficult
nonlinear problems in chemistry and biotechnology through the simple
linear transformation technique. The distinctive features and excellent
empirical performance of SVMs have drawn chemists and biologists so
much that a number of papers, mainly concerned with the applications
of SVMs, have been published in chemistry and biotechnology in recent
years. These applications cover a large range of meaningful chemical or
biological problems, for example, spectral calibration, drug design, quan-
titative structure-activity and property relationships (QSAR/QSPR),
food quality control, chemical reaction monitoring, metabolic fingerprint
analysis, protein structure and function prediction, microarray data-
based cancer classification, and so on.

However, we should also admit that SVMs are not as widely used
as traditional methods such as principal component analysis (PCA) and
partial least squares (PLS) in chemistry and metabolomics. In order to
efficiently apply this rather new technique to solve difficult problems in
chemistry and biotechnology, one should have a sound in-depth under-
standing of what kind of information this new mathematical tool could
really provide and what its statistical properties are. However, the dif-
ference in professions makes one feel worlds apart. The gap between the
mathematicians and the chemists as well as biologists is actually very large

vil
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because most chemists and biologists are not quite familiar with the theo-
retical mathematical language and its abstract descriptions. Undoubtedly,
this gap limits the applications of SVMs. It goes without saying that the
deeper the understanding of SVMs one has, the better application one
may achieve. However, to our best knowledge, there is currently no book
that provides chemists and biologists with easy-to-understand materials
on what SVMs are and how they work.

Thus it seems urgent to build a much needed bridge between the
theory and applications of SVMs and hence lessen and even fill the gap.
This book aims at giving a deeper and more thorough description of the
mechanism of SVMs from the point of view of chemists and biologists
and hence making it easy for those scientists to understand. We believe
that we might have found the way to do this. Thus it could be expected
that more and more researchers will have access to SVMs and further
apply them in the solution of meaningful problems in chemistry and bio-
technology. We would like to say the above discussion is our main moti-
vation in writing such a book to construct a bridge between the theory
and applications of SVMs.

This book is composed of eight chapters. The first four chapters
mainly address the theoretical aspects of SVMs, and the latter four chap-
ters are focused on the applications on the quantitative structure-activity
relationship, near-infrared spectroscopy, traditional Chinese medicines,
and OMICS studies, respectively.

We would like to acknowledge the contributions of many people to
the conception and completion of this book. Lance Wobus of Taylor &
Francis Books/CRC Press is gratefully acknowledged for his kind encour-
agement in writing this book as well as his great help which enabled
its publication. Dr. Wei Fan in our group is also acknowledged for pro-
viding the near-infrared data as well as the helpful discussions on data
analysis. Dr. Liang-Xiao Zhang in our group is acknowledged for his
help with the literature.

Yizeng Liang
Changsha, Yuelu Mountain
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chapter one

Overview of support
vector machines

Contents
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RELETEIICES. ... ettt 12

1.1 Introduction

Machine learning is a scientific discipline related to the design and devel-
opment of algorithms that allow computers to learn from the given train-
ing data. Generally, the learning algorithms can be classified into two
taxonomies: unsupervised learning and supervised learning, according
to whether an output vector is needed to supervise the learning process.
Supervised learning can be further divided into two types: regression
and classification. The former refers to the situation where the output vec-
tor consists of continuous value and the latter refers to the case where
the output vector denotes the discrete class label of each sample. This
book introduces the state-of-the-art supervised learning algorithm, and
support vector machines (SVMs), as well as its applications, in chemis-
try and biotechnology. A huge amount of data, such as vibration spectra,
drug activity, OMICS, data from analytical instruments, and microarray
experiment-based gene expression profiles have recently been generated
in chemistry and biotechnology. How to mine useful information from
such data using SVMs is the main concern of this book. In this chapter, the
background and key elements of SVM together with some applications in
chemistry and biotechnology are briefly described.
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1.2 Background

SVMs, developed by Vapnik and his coworkers in the field of computer
science, are supervised machine learning algorithms for data mining and
knowledge discovery. They stem from the framework of statistical learning
theory or Vapnik—Chervonenkis (VC) theory and were originally devel-
oped for the pattern recognition problem. To date, VC theory is the most
successful tool for accurately describing the capacity of a learned model
and further telling us how to ensure the generalization performance for
future samples by controlling model capacity. The theory mainly concerns
the consistency of a learning process the rate of convergence of a learning
process, how to control the generalization performance of a learning pro-
cess, and how to construct learning algorithms. VC dimension and the
structural risk minimization (SRM) principle are the two most important
elements of VC theory. VC dimension is a measure of the capacity of a set
of functions and the SRM principle can ensure that the learned model can
generalize well.

Historically, all the necessary elements that form the theory and
algorithm of SVMs have been known since the early 1970s. But it took
about 25 years before the concept of SVMs was developed and the spirit
of SVMs was systematically elucidated in a formal way in the two funda-
mental monographs: Statistical Learning Theory and The Nature of Statistical
Learning Theory [1, 2]. As pointed out in the two books, in contrast to tradi-
tional learning methods where dimension reduction is performed in order
to control the generalization performance of the model, the SVMs dramat-
ically increase the dimensionality of the data and then build an optimal
separating hyperplane in the high-dimensional feature space relying on
the so-called margin maximizing technique. It’s surprising but expected
that very excellent performance is observed when SVMs are applied to
practical problems such as handwriting recognition.

The distinctive features and excellent empirical performance greatly
accelerate the expansion of the SVM idea and further lead to their appli-
cation in a wide variety of fields, such as credit rating analysis [3], text
classification [4], spectral calibration [5,6], QSAR/QSPR [7,8], drug design
[9], cancer classification [10], protein structure and function prediction
[11,12] and metabolomics [13]. All these contribute to both the theoretic
and experimental development of SVM and make it a very active area.

Considering the outstanding performances of SVMs, one may be eager
to discover what on earth makes SVMs so powerful. To this end, it’s first
recommended to have a basic mastering of the necessary mathematics that
formulate the theory of SVM, which include, but are not limited to, maxi-
mal interval linear classifier, kernel functions, kernel matrix, feature spaces,
optimization theory (linear or quadratic programming), dual representa-
tions, and so on. Now let’s go through these key points step by step.
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1.2.1 Maximal interval linear classifier

In classification, the simplest model is the linear classifier, which was
mainly developed in the precomputer age of statistical and machine
learning. Even in the current era with rapid computer development, there
are still enough reasons to employ the linear model to perform our studies
because it is easy for us to understand the latent input/output relationship
and to make some further interpretations or statistical inferences based
on the established linear model.

Linear regression is the simplest way to build a linear classifier.
Typically we are given a dataset of m samples collected into a matrix X of
size m x p, where p denotes the number of variables. The class label vector
is y with its element “1” standing for the positive class or “~1” standing for
the negative class in the binary classification setting. The linear regression
model has the following formula:

y=XP+e 1.1

where [ is the unknown regression coefficient vector and e denotes the
systematic error. By minimizing the squared error loss function which is
in vector form defined as

RSS(B)=(y— XB)" (y - XB) 1.2)

where RSS stands for residual sum of squares, the least squares solution
to the linear model can be easily computed as

B=(X"X)'X"y (13)

Then one can make predictions using the following fitted model.

§=Xp (14)

Given a new sample x,,, which has not been seen by the fitted model
shown in Equation (1.4), let’s see how to predict its class. If the computed
V.. by Equation (14) is positive, then one can say that x,.,, should belong
to the positive class “1”. On the contrary, if ,,, is a minus number, the
class of x,., should be predicted as “~1”. The prediction rule can be sum-
marized as

1/ If }} new > O
Predicted class label = (1.5)

—1’ if‘ glh’ll' > O
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Let’s see an example. We first simulate a two-dimensional dataset of
22 samples, with 15 samples belonging to the positive class (circle marker)
and the remaining 7 samples to the negative class (diamond marker). The
data are shown in Figure 1.1A. Then a linear regression model is fitted
to the data and the resulting linear classifier is also given in Figure 1.1A
as a solid line. Apparently in this linearly separable case, all the samples
are correctly classified by the constructed linear classifier. The careful
reader will find that the classifier is very close to the positive class and
may further claim that this classifier is not reliable because the positive
sample is easily misclassified as a negative sample if it is contaminated by
noise. In other words, this classifier is unfair to the positive samples and
somewhat “dangerous.” Therefore, it seems necessary for us to develop a
“safer” strategy based on which one can establish a “safer” or more reli-
able classification rule. Next we address this “safer” kind of classifier: a
linear classifier with maximal interval.

Figure 1.1B shows the same data as shown in Figure 1.1A. Note that
there are altogether three parallel lines. Two dashed lines are located on
the boundaries of the two classes of samples and the solid line is in the
middle of the two dashed lines. Further suppose that the line in the mid-
dle is a candidate classifier. With these assumptions, we can now define
the interval of the candidate classifier as the distance between the two
dashed lines. Intuitively, this definition has a clear geometrical explana-
tion and is very easy to understand. Naturally, the one whose interval
achieves the maximum is defined as the linear classifier with maximal
interval. By the way, it should be mentioned here that the interval of a

0.9+ 0.9+
0.8+ 084
07 074
0.6 J 0.6
X 0.5 X2 0.5
0.4+ 0.4
0.3+ 0.3
02- 02
0.1 & 0.1+
0 - : : . 0 : . . ,
0 02 04 06 08 1 0 02 04 06 08 1
Xl Xl

Figure 1.1 Illustration of the linear classifier built by using linear regression
(Plot A) and the linear classifier with maximal interval (Plot B).
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classifier can also be termed margin. In the SVM research, we prefer to use
the term margin instead of interval.

Compared to the linear classifier in Figure 1.1A, one can easily find
that the linear classifier with maximal interval should be the best choice
in that it has the larger capacity to tolerate the noise or error. Intuitionally,
it is the safest one. Of course, it is necessary for us to know how the
maximal interval classifier can be computed because it is very important
for developing SVMs. We can perhaps call it the predecessor of SVMs.
However, we do not show the computational procedure here. Readers can
refer directly to Chapter 2 for detailed information on both mathematics
and computations.

Let’s reconsider the example in Figure 1.1. In this case, the simulated
data are linearly separable and the margin (interval) between classes can
be easily defined in geometrics. However, the reader may ask questions
such as, “Does the notion of maximal interval linear classifier still work
if the data are linearly inseparable? If it does, where is the linear classifier
and what is the margin?” It is not possible for us to find such a linear clas-
sifier in the exterior, let alone the one with maximal interval. However,
it is shown by taking a simple but enlightening example where the lin-
ear classifier does exist in the so-called feature space produced by kernel
functions: another key element for developing SVM.

1.2.2  Kernel functions and kernel matrix

To intuitively understand the notion of a kernel function, let’s first see
another dataset shown in Figure 1.2. The data in each class are distributed
in two circular regions. Each sample belongs to either the positive class
(plus marker) or negative class (asterisk marker) and they cannot be sepa-
rated well using a linear classifier in the 2-D space (Figure 1.2A). One way
to solve this problem is to construct very complicated nonlinear models,
for example, ANN. However, it should be noticed that the adjustment of
tuning parameters of such kinds of model is usually a time-consuming
and tedious task. Moreover, the learned nonlinear discriminating func-
tion is most often so flexible that it is difficult for one to ensure its general-
ization performance. However, the other feasible and effective solution is
simply to increase the dimension of the data.

In this case, let’s increase the dimension of each sample by one. For
the ith sample x; = [x;;, X;,], the value of the third dimension can simply
be calculated as x;; = X;,*> + x;,%. Thus, in the 3-D space in Figure 1.2B, the
ith sample can be denoted by x; = [X;;, X;5, X;3]. Indeed, this operation real-
izes a nonlinear mapping of the original data from the input space (origi-
nal low-dimensional variable space before increasing dimensions) into
feature space (higher-dimensional space after increasing dimensions).
This operation, usually called feature mapping, is primarily an implicit
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Figure 1.2 The two plots ((A) and (B)) show that the two classes of linearly
inseparable samples (plus and asterisk) in a two-dimensional space can be sepa-
rated linearly without errors when the third dimension is added to each sample.
It should be mentioned that the operation of increasing data dimension can be
easily and explicitly implemented by using the kernel function.

characteristic of the kernel function. Obviously, it can be seen that the
linearly inseparable samples in 2-D space can be separated by a linear
hyperplane without any errors.

But we face some problems. For instance: how could we efficiently
choose the function to compute the additional dimension? Can we ensure
the dimension-increased data are linearly separable? Do we have to know
explicitly the function for adding dimensions? We illustrate that the ker-
nel function does provide a smart solution to this problem. It serves as
a dimension-increasing technique and further transforms the linearly
inseparable data into linearly separable data in the feature space. More
interesting, with the help of kernel functions, it’s not even necessary for
us to know the mathematical form of the functions for adding dimension.
However, kernel function details are not delineated in this chapter. But a
brief introduction is necessary. Please consult Chapters 2 and 3 for both
theoretical and computational details for kernel functions.

Briefly, a kernel function is primarily a symmetric mathematical
function that has the general form shown in Equation (1.6),

K(X,, X)) =<o(X,),0(X,)>,i,j=1,2,3..m (1.6)
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where <-> denotes the inner product and ¢() is a set of mapping
functions that can project the original samples into a high-dimensional
feature space. That is to say, ¢(X)) is a vector of higher dimension than X..
Furthermore, for each pair of samples, one can compute an inner prod-
uct using Equation (1.6). All the inner products are now collected into a
matrix K with elements

K, =K(X, X)) 17)

This matrix K is the so-called kernel matrix, which without any exception
is a key point of all the kernel-based algorithms. From this perspective,
SVMs are just a special case of kernel methods. As is known, the inner
product is a measurement of the similarity between two samples. In this
sense, each element of the kernel matrix reflects the similarity between
the samples in the feature space produced by ¢().

So far, we have at least a basic understanding of kernel functions and
the associated kernel matrix. Now it is time for us to determine what
properties of a function K(X, X)) are necessary to ensure that it is a kernel
function for some feature space. According to Mercer’s theorem, assume
that X is a finite input space with a symmetric function on X. It becomes
a kernel function if and only if the resulting kernel matrix K is positive
semidefinitive, that is, without negative eigenvalues.

1.2.3  Optimization theory

Optimization theory is very important for SVMs because the computation
of the SVM model can be converted to find the solution of a correspond-
ing optimization problem. In the area of optimization, the most frequent
cases we are confronted with may be those of constrained optimization.
A special constrained case is convex optimization where the feasible solu-
tion of the optimization problem is convex, meaning that any connect-
ing line between two points of the feasible region still falls in the region.
There are many freely available programs written in C++, MATLAB®, or
R for solving convex problem. But how are SVMs related to the optimiza-
tion problem?

SVMs work mainly in three steps: (1) using a given kernel function to
transform the original data into the feature space; (2) mathematically defin-
ing a general linearly separating hyperplane associated with a margin in
the feature space, and further establishing a convex optimization problem
with maximizing the margin as the objective function; and (3) finding the
solution to the convex problem. The solution is just the linear classifier in
the feature space with maximal margin, which is the so-called SVMs clas-
sifier. It is also called the optimal separating hyperplane (OSH).
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As we know, the Lagrange multiplier method is a famous technique
for solving optimization problems. In the case of SVMs, the problem of
maximizing the margin can also be solved by this method. Without loss
of generality, we assume that the derived optimization problem with
Lagrange multipliers a introduced is

Maximize: f(w,a) (1.8)

Here w denotes the primal variables of a SVM model. By deriving (1.8)
against w and setting it to zero, one can derive an equivalent optimization
problem with w eliminated. That is,

Maximize: g(«) (1.9)

In (1.8) and (1.9), « is called the dual variable. Formula (1.8) is called the
primal problem, and Formula (1.9) is called the dual problem correspond-
ing to (1.8). This characteristic is the so-called duality. Only the general
notion is given here. In Chapter 2, we show this in great detail.

The Lagrangian treatment of convex optimization problems results
in an alternative dual representation, which in most cases turns out to
be much cheaper to compute than the primal problem. The reason for
this is that the dual problem is just a convex problem with simpler con-
straints and can be solved easily using quadratic programming (QP).
By the way, dual strategies play a central role in kernel methods, such
as kernelized Fisher discriminant analysis (KFDA) [14-17] and ker-
nelized partial least squares (KPLS) [18,19], and so on. Support vector
machines are special kernel methods that possess some distinguished
properties, such as margin maximization and sparsity, which are dis-
cussed later.

1.3 Elements of support vector machines

In the last section, we introduced the foundations of support vector
machines. Here, we string them together, trying to give an overall pic-
ture of SVMs. Figure 1.3 shows the basic procedures for computing a
SVM model. Summing up, a SVM model is the mathematical solution of a
convex optimization problem whose objective is to maximize the margin
of the linear classifier in the feature space produced by the user-chosen
kernel function. It should be emphasized here, according to William S.
Noble [20], that the basic idea behind the SVM classifier can be explained
without ever reading an equation. To understand the essence of the SVM
classifier, one only needs to grasp four concepts: kernel function, feature
space, separating hyperplane, and optimization problem. Once again, it



